|
--- |
|
tags: |
|
- fastai |
|
- text-classification |
|
datasets: rajeshradhakrishnan/malayalam_news |
|
widget: |
|
- text: ഓഹരി വിപണി തകരുമ്പോള് നിക്ഷേപം എങ്ങനെ സുരക്ഷിതമാക്കാം |
|
example_title: Malayalam News Classifier |
|
--- |
|
|
|
|
|
# Malayalam (മലയാളം) Classifier using fastai (Working in Progress) |
|
|
|
🥳 This model is my attempt to use machine learning using Malayalam Language. Huge inspiration from [Malayalam Text Classifier](https://kurianbenoy.com/2022-05-30-malayalamtext-0/). Courtesy to @waydegilliam for [blurr](https://ohmeow.github.io/blurr/text-examples-multilabel.html) |
|
|
|
🌈 മലയാളത്തിൽ മെഷീൻ ലീർണിങ് പഠിക്കാനും പിന്നേ പരിചയപ്പെടാനും, to be continued... |
|
|
|
# How its built ? & How to use ? |
|
|
|
Please find the [notebook](https://nbviewer.org/github/rajeshradhakrishnanmvk/kitchen2.0/blob/feature101-frontend/ml/fastai_X_Hugging_Face_Group_2022.ipynb) used for training the model |
|
|
|
Usage: |
|
|
|
First, install the utilities to load the model as well as `blurr`, which was used to train this model. |
|
|
|
```bash |
|
!pip install huggingface_hub[fastai] |
|
!git clone https://github.com/ohmeow/blurr.git && cd blurr && pip install -e ".[dev]" |
|
``` |
|
|
|
```python |
|
from huggingface_hub import from_pretrained_fastai |
|
learner = from_pretrained_fastai("rajeshradhakrishnan/ml-news-classify-fastai") |
|
|
|
|
|
sentences = ["ഓഹരി വിപണി തകരുമ്പോള് നിക്ഷേപം എങ്ങനെ സുരക്ഷിതമാക്കാം", |
|
"വാര്ണറുടെ ഒറ്റക്കയ്യന് ക്യാച്ചില് അമ്പരന്ന് ക്രിക്കറ്റ് ലോകം"] |
|
|
|
probs = learner.predict(sentences) |
|
# 'business', 'entertainment', 'sports', 'technology' |
|
for idx in range(len(sentences)): |
|
print(f"Probability that sentence '{sentences[idx]}' is business is: {100*probs[idx]['probs'][0]:.2f}%") |
|
print(f"Probability that sentence '{sentences[idx]}' is entertainment is: {100*probs[idx]['probs'][1]:.2f}%") |
|
print(f"Probability that sentence '{sentences[idx]}' is sports is: {100*probs[idx]['probs'][2]:.2f}%") |
|
print(f"Probability that sentence '{sentences[idx]}' is technology is: {100*probs[idx]['probs'][3]:.2f}%") |
|
|
|
``` |
|
|
|
--- |
|
|
|
|
|
# Model card |
|
|
|
## Model description |
|
The is a Malayalam classifier model for labels 'business', 'entertainment', 'sports', 'technology'. |
|
|
|
## Intended uses & limitations |
|
The model can be used to categorize malayalam new sfeed. |
|
|
|
## Training and evaluation data |
|
|
|
Data is from the [AI4Bharat-IndicNLP Dataset](https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset) and wrapper to extract only Malayalam data( [HF dataset](https://huggingface.co/datasets/rajeshradhakrishnan/malayalam_news))!. |
|
|
|
## Citation |
|
|
|
|
|
``` |
|
@article{kunchukuttan2020indicnlpcorpus, |
|
title={AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages}, |
|
author={Anoop Kunchukuttan and Divyanshu Kakwani and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, |
|
year={2020}, |
|
journal={arXiv preprint arXiv:2005.00085}, |
|
} |
|
``` |