|
import torch.nn as nn |
|
|
|
from medomni.models.unet3d.buildingblocks import DoubleConv, ResNetBlock, ResNetBlockSE, \ |
|
create_decoders, create_encoders |
|
from medomni.models.unet3d.utils import get_class, number_of_features_per_level |
|
import ipdb |
|
|
|
|
|
class AbstractUNet(nn.Module): |
|
""" |
|
Base class for standard and residual UNet. |
|
|
|
Args: |
|
in_channels (int): number of input channels |
|
out_channels (int): number of output segmentation masks; |
|
Note that the of out_channels might correspond to either |
|
different semantic classes or to different binary segmentation mask. |
|
It's up to the user of the class to interpret the out_channels and |
|
use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) |
|
or BCEWithLogitsLoss (two-class) respectively) |
|
f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number |
|
of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4 |
|
final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution, |
|
otherwise apply nn.Softmax. In effect only if `self.training == False`, i.e. during validation/testing |
|
basic_module: basic model for the encoder/decoder (DoubleConv, ResNetBlock, ....) |
|
layer_order (string): determines the order of layers in `SingleConv` module. |
|
E.g. 'crg' stands for GroupNorm3d+Conv3d+ReLU. See `SingleConv` for more info |
|
num_groups (int): number of groups for the GroupNorm |
|
num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int) |
|
default: 4 |
|
is_segmentation (bool): if True and the model is in eval mode, Sigmoid/Softmax normalization is applied |
|
after the final convolution; if False (regression problem) the normalization layer is skipped |
|
conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module |
|
pool_kernel_size (int or tuple): the size of the window |
|
conv_padding (int or tuple): add zero-padding added to all three sides of the input |
|
is3d (bool): if True the model is 3D, otherwise 2D, default: True |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr', |
|
num_groups=8, num_levels=4, is_segmentation=True, conv_kernel_size=3, pool_kernel_size=2, |
|
conv_padding=1, is3d=True): |
|
super(AbstractUNet, self).__init__() |
|
|
|
if isinstance(f_maps, int): |
|
f_maps = number_of_features_per_level(f_maps, num_levels=num_levels) |
|
|
|
assert isinstance(f_maps, list) or isinstance(f_maps, tuple) |
|
assert len(f_maps) > 1, "Required at least 2 levels in the U-Net" |
|
if 'g' in layer_order: |
|
assert num_groups is not None, "num_groups must be specified if GroupNorm is used" |
|
|
|
|
|
self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, |
|
num_groups, pool_kernel_size, is3d) |
|
|
|
|
|
self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups, |
|
is3d) |
|
|
|
|
|
if is3d: |
|
self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1) |
|
else: |
|
self.final_conv = nn.Conv2d(f_maps[0], out_channels, 1) |
|
|
|
if is_segmentation: |
|
|
|
if final_sigmoid: |
|
self.final_activation = nn.Sigmoid() |
|
else: |
|
self.final_activation = nn.Softmax(dim=1) |
|
else: |
|
|
|
self.final_activation = None |
|
|
|
def forward(self, x): |
|
|
|
encoders_features = [] |
|
for encoder in self.encoders: |
|
x = encoder(x) |
|
|
|
encoders_features.insert(0, x) |
|
|
|
|
|
|
|
encoders_features = encoders_features[1:] |
|
|
|
|
|
for decoder, encoder_features in zip(self.decoders, encoders_features): |
|
|
|
|
|
x = decoder(encoder_features, x) |
|
|
|
x = self.final_conv(x) |
|
|
|
|
|
|
|
if not self.training and self.final_activation is not None: |
|
x = self.final_activation(x) |
|
|
|
return x |
|
|
|
|
|
class UNet3D(AbstractUNet): |
|
""" |
|
3DUnet model from |
|
`"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" |
|
<https://arxiv.org/pdf/1606.06650.pdf>`. |
|
|
|
Uses `DoubleConv` as a basic_module and nearest neighbor upsampling in the decoder |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', |
|
num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs): |
|
super(UNet3D, self).__init__(in_channels=in_channels, |
|
out_channels=out_channels, |
|
final_sigmoid=final_sigmoid, |
|
basic_module=DoubleConv, |
|
f_maps=f_maps, |
|
layer_order=layer_order, |
|
num_groups=num_groups, |
|
num_levels=num_levels, |
|
is_segmentation=is_segmentation, |
|
conv_padding=conv_padding, |
|
is3d=True) |
|
|
|
|
|
class ResidualUNet3D(AbstractUNet): |
|
""" |
|
Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf. |
|
Uses ResNetBlock as a basic building block, summation joining instead |
|
of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts). |
|
Since the model effectively becomes a residual net, in theory it allows for deeper UNet. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', |
|
num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, **kwargs): |
|
super(ResidualUNet3D, self).__init__(in_channels=in_channels, |
|
out_channels=out_channels, |
|
final_sigmoid=final_sigmoid, |
|
basic_module=ResNetBlock, |
|
f_maps=f_maps, |
|
layer_order=layer_order, |
|
num_groups=num_groups, |
|
num_levels=num_levels, |
|
is_segmentation=is_segmentation, |
|
conv_padding=conv_padding, |
|
is3d=True) |
|
|
|
|
|
class ResidualUNetSE3D(AbstractUNet): |
|
"""_summary_ |
|
Residual 3DUnet model implementation with squeeze and excitation based on |
|
https://arxiv.org/pdf/1706.00120.pdf. |
|
Uses ResNetBlockSE as a basic building block, summation joining instead |
|
of concatenation joining and transposed convolutions for upsampling (watch |
|
out for block artifacts). Since the model effectively becomes a residual |
|
net, in theory it allows for deeper UNet. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', |
|
num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, **kwargs): |
|
super(ResidualUNetSE3D, self).__init__(in_channels=in_channels, |
|
out_channels=out_channels, |
|
final_sigmoid=final_sigmoid, |
|
basic_module=ResNetBlockSE, |
|
f_maps=f_maps, |
|
layer_order=layer_order, |
|
num_groups=num_groups, |
|
num_levels=num_levels, |
|
is_segmentation=is_segmentation, |
|
conv_padding=conv_padding, |
|
is3d=True) |
|
|
|
|
|
class UNet2D(AbstractUNet): |
|
""" |
|
2DUnet model from |
|
`"U-Net: Convolutional Networks for Biomedical Image Segmentation" <https://arxiv.org/abs/1505.04597>` |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', |
|
num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs): |
|
super(UNet2D, self).__init__(in_channels=in_channels, |
|
out_channels=out_channels, |
|
final_sigmoid=final_sigmoid, |
|
basic_module=DoubleConv, |
|
f_maps=f_maps, |
|
layer_order=layer_order, |
|
num_groups=num_groups, |
|
num_levels=num_levels, |
|
is_segmentation=is_segmentation, |
|
conv_padding=conv_padding, |
|
is3d=False) |
|
|
|
|
|
def get_model(model_config): |
|
model_class = get_class(model_config['name'], modules=[ |
|
'pytorch3dunet.unet3d.model' |
|
]) |
|
return model_class(**model_config) |
|
|