DeepSeek V3 - INT4 (TensorRT-LLM)

This repository provides an INT4-quantized version of the DeepSeek V3 model, suitable for high-speed, memory-efficient inference with TensorRT-LLM.

Model Summary • Base Model: DeepSeek V3 (BF16) <--- (from Nvidia FP8) • Quantization: Weight-only INT4 (W4A16)

python convert_checkpoint.py \
  --model_dir /home/user/hf/deepseek-v3-bf16 \
  --output_dir /home/user/hf/deepseek-v3-int4 \
  --dtype bfloat16 \
  --tp_size 4 \
  --use_weight_only \
  --weight_only_precision int4 \
  --workers 4

Hardware reqs:

  • 4×80 GB H100 or H200 (Optimal)

Example usage:

trtllm-build --checkpoint_dir /DeepSeek-V3-int4-TensorRT  \
--output_dir ./trtllm_engines/deepseek_v3/int4/tp4-sel4096-isl2048-bs4  \
...

Disclaimer:

This model is a quantized checkpoint intended for research and experimentation with high-performance inference. Use at your own risk and validate outputs for production use-cases.

Downloads last month
187
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for inarikami/DeepSeek-V3-int4-TensorRT

Finetuned
(7)
this model