Model Card for Model ID
Finetuned Llama3-8B-Instruct model on https://huggingface.co/datasets/isaacchung/hotpotqa-dev-raft-subset.
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Isaac Chung
- Language(s) (NLP): [English]
- License: [Apache 2.0]
- Finetuned from model [optional]: meta-llama/Meta-Llama-3-8B-Instruct
How to Get Started with the Model
Use the code below to get started with the model.
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("isaacchung/llama3-8B-hotpotqa-raft")
model = AutoModelForCausalLM.from_pretrained("isaacchung/llama3-8B-hotpotqa-raft")
Training Details
Training Data
https://huggingface.co/datasets/isaacchung/hotpotqa-dev-raft-subset
Training Procedure
Training Hyperparameters
Model loaded:
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right' # to prevent warnings
Training params:
# LoRA config based on QLoRA paper & Sebastian Raschka experiment
peft_config = LoraConfig(
lora_alpha=128,
lora_dropout=0.05,
r=256,
bias="none",
target_modules="all-linear",
task_type="CAUSAL_LM",
)
args = TrainingArguments(
num_train_epochs=3, # number of training epochs
per_device_train_batch_size=3, # batch size per device during training
gradient_accumulation_steps=2, # number of steps before performing a backward/update pass
gradient_checkpointing=True, # use gradient checkpointing to save memory
optim="adamw_torch_fused", # use fused adamw optimizer
logging_steps=10, # log every 10 steps
save_strategy="epoch", # save checkpoint every epoch
learning_rate=2e-4, # learning rate, based on QLoRA paper
bf16=True, # use bfloat16 precision
tf32=True, # use tf32 precision
max_grad_norm=0.3, # max gradient norm based on QLoRA paper
warmup_ratio=0.03, # warmup ratio based on QLoRA paper
lr_scheduler_type="constant", # use constant learning rate scheduler
)
max_seq_length = 3072 # max sequence length for model and packing of the dataset
trainer = SFTTrainer(
model=model,
args=args,
train_dataset=dataset,
peft_config=peft_config,
max_seq_length=max_seq_length,
tokenizer=tokenizer,
packing=True,
dataset_kwargs={
"add_special_tokens": False, # We template with special tokens
"append_concat_token": False, # No need to add additional separator token
}
)
Speeds, Sizes, Times [optional]
- train_runtime: 1148.4436
- train_samples_per_second: 0.392
- train_steps_per_second: 0.065
- train_loss: 0.5639963404337565
- epoch: 3.0
Training Loss
{'loss': 1.0092, 'grad_norm': 0.27965569496154785, 'learning_rate': 0.0002, 'epoch': 0.4}
{'loss': 0.695, 'grad_norm': 0.17789314687252045, 'learning_rate': 0.0002, 'epoch': 0.8}
{'loss': 0.6747, 'grad_norm': 0.13655725121498108, 'learning_rate': 0.0002, 'epoch': 1.2}
{'loss': 0.508, 'grad_norm': 0.14653471112251282, 'learning_rate': 0.0002, 'epoch': 1.6}
{'loss': 0.4961, 'grad_norm': 0.14873674511909485, 'learning_rate': 0.0002, 'epoch': 2.0}
{'loss': 0.3509, 'grad_norm': 0.1657964587211609, 'learning_rate': 0.0002, 'epoch': 2.4}
{'loss': 0.3321, 'grad_norm': 0.1634644716978073, 'learning_rate': 0.0002, 'epoch': 2.8}
Technical Specifications [optional]
Compute Infrastructure
Hardware
- 1x NVIDIA RTX 6000 Ada
Model Card Contact
- Downloads last month
- 33
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.