結合兩個數據庫來做微調模型來達到知識問答和聊天的機器人
- wikimedia/wikipedia
- stingning/ultrachat
1.效率:透過使用GPU加速、LoRA、梯度累積和混合精度訓練(FP16),最大化運算資源和訓練速度。
2.適應性:透過LoRA對模型的特定組件進行微調,它可以以減少參數達到(30%)以更新更有效地適應目標任務的預訓練模型。
api使用方法:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("j40pl7lly/fine-tuning-chat-liu")
model = AutoModelForCausalLM.from_pretrained("j40pl7lly/fine-tuning-chat-liu")
Reference
If you use this model and love it, use this to cite it 🤗
Citation
@misc{privacy_faceemotionrecognition_system,
title={Fine-tuned LLM model based on open source mistral-7B},
author={Liu Hsin Kuo},
year={2024},
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.