jialinselenasong's picture
wav2vec2-large-xls-r-300m-zhhk
344886b
|
raw
history blame
2.8 kB
metadata
license: apache-2.0
base_model: ctl/wav2vec2-large-xlsr-cantonese
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-large-xls-r-300m-zhhk
    results: []

wav2vec2-large-xls-r-300m-zhhk

This model is a fine-tuned version of ctl/wav2vec2-large-xlsr-cantonese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.6213
  • Cer: 0.7864

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.3317 1.35 400 4.5373 0.7915
0.3303 2.71 800 4.5198 0.7915
0.3288 4.06 1200 4.8663 0.8504
0.2901 5.41 1600 4.6080 0.8198
0.2819 6.77 2000 4.4941 0.7316
0.2629 8.12 2400 4.6927 0.8021
0.2363 9.48 2800 4.8796 0.8701
0.2205 10.83 3200 4.6338 0.8087
0.2171 12.18 3600 4.5740 0.7562
0.1875 13.54 4000 4.6072 0.7992
0.1824 14.89 4400 4.6546 0.7669
0.178 16.24 4800 4.6410 0.7961
0.1644 17.6 5200 4.7306 0.8236
0.155 18.95 5600 4.6632 0.7900
0.1396 20.3 6000 4.6239 0.8015
0.1411 21.66 6400 4.6007 0.7793
0.13 23.01 6800 4.5354 0.7475
0.1232 24.37 7200 4.6229 0.7600
0.1239 25.72 7600 4.6382 0.7727
0.1322 27.07 8000 4.6734 0.7902
0.1338 28.43 8400 4.6536 0.7861
0.1353 29.78 8800 4.6213 0.7864

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0