|
--- |
|
license: mit |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mbart-large-50-finetuned-stocks-event-all |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbart-large-50-finetuned-stocks-event-all |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5518 |
|
- Rouge1: 0.5383 |
|
- Rouge2: 0.4868 |
|
- Rougel: 0.5387 |
|
- Rougelsum: 0.5362 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.2097 | 1.0 | 97 | 0.5821 | 0.5174 | 0.4646 | 0.5137 | 0.5111 | |
|
| 0.5315 | 2.0 | 194 | 0.4826 | 0.5169 | 0.4709 | 0.5186 | 0.5168 | |
|
| 0.3602 | 3.0 | 291 | 0.4677 | 0.5319 | 0.4811 | 0.5344 | 0.5304 | |
|
| 0.2639 | 4.0 | 388 | 0.4724 | 0.5319 | 0.4750 | 0.5335 | 0.5318 | |
|
| 0.1715 | 5.0 | 485 | 0.4504 | 0.5331 | 0.4790 | 0.5337 | 0.5323 | |
|
| 0.1136 | 6.0 | 582 | 0.4894 | 0.5321 | 0.4886 | 0.5324 | 0.5295 | |
|
| 0.0618 | 7.0 | 679 | 0.5445 | 0.5456 | 0.4959 | 0.5473 | 0.5438 | |
|
| 0.0347 | 8.0 | 776 | 0.5518 | 0.5383 | 0.4868 | 0.5387 | 0.5362 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|