metadata
tags:
- generated_from_trainer
datasets:
- reddit
metrics:
- rouge
model-index:
- name: pegasus-xsum-reddit-clean-4
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: reddit
type: reddit
args: default
metrics:
- name: Rouge1
type: rouge
value: 27.7525
pegasus-xsum-reddit-clean-4
This model is a fine-tuned version of google/pegasus-xsum on the reddit dataset. It achieves the following results on the evaluation set:
- Loss: 2.7697
- Rouge1: 27.7525
- Rouge2: 7.9823
- Rougel: 20.9276
- Rougelsum: 22.6678
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.0594 | 1.0 | 1906 | 2.8489 | 27.9837 | 8.0824 | 20.9135 | 22.7261 |
2.861 | 2.0 | 3812 | 2.7793 | 27.8298 | 8.048 | 20.8653 | 22.6781 |
2.7358 | 3.0 | 5718 | 2.7697 | 27.7525 | 7.9823 | 20.9276 | 22.6678 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1