|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- reddit |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-xsum-reddit-clean-4 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: reddit |
|
type: reddit |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 27.7525 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-xsum-reddit-clean-4 |
|
|
|
This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the reddit dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7697 |
|
- Rouge1: 27.7525 |
|
- Rouge2: 7.9823 |
|
- Rougel: 20.9276 |
|
- Rougelsum: 22.6678 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 3.0594 | 1.0 | 1906 | 2.8489 | 27.9837 | 8.0824 | 20.9135 | 22.7261 | |
|
| 2.861 | 2.0 | 3812 | 2.7793 | 27.8298 | 8.048 | 20.8653 | 22.6781 | |
|
| 2.7358 | 3.0 | 5718 | 2.7697 | 27.7525 | 7.9823 | 20.9276 | 22.6678 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|