juanxrl8's picture
End of training
9f8ed0e verified
metadata
library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
  - generated_from_trainer
datasets:
  - biobert_json
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-spanish-wwm-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: biobert_json
          type: biobert_json
          config: Biobert_json
          split: validation
          args: Biobert_json
        metrics:
          - name: Precision
            type: precision
            value: 0.9499079600602444
          - name: Recall
            type: recall
            value: 0.9645426224865478
          - name: F1
            type: f1
            value: 0.9571693552920016
          - name: Accuracy
            type: accuracy
            value: 0.977242282165256

bert-base-spanish-wwm-uncased-finetuned-ner

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on the biobert_json dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1255
  • Precision: 0.9499
  • Recall: 0.9645
  • F1: 0.9572
  • Accuracy: 0.9772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0412 1.0 612 0.1343 0.9401 0.9624 0.9512 0.9734
0.0632 2.0 1224 0.1082 0.9360 0.9654 0.9505 0.9746
0.0568 3.0 1836 0.1070 0.9469 0.9659 0.9563 0.9765
0.0486 4.0 2448 0.1104 0.9477 0.9669 0.9572 0.9771
0.0334 5.0 3060 0.1158 0.9425 0.9643 0.9533 0.9756
0.0311 6.0 3672 0.1238 0.9449 0.9644 0.9546 0.9753
0.0249 7.0 4284 0.1178 0.9473 0.9652 0.9561 0.9767
0.0245 8.0 4896 0.1244 0.9483 0.9656 0.9569 0.9772
0.0185 9.0 5508 0.1227 0.9492 0.9643 0.9567 0.9771
0.0165 10.0 6120 0.1255 0.9499 0.9645 0.9572 0.9772

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3