|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- biobert_json |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-uncased-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: biobert_json |
|
type: biobert_json |
|
config: Biobert_json |
|
split: validation |
|
args: Biobert_json |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9437070282658518 |
|
- name: Recall |
|
type: recall |
|
value: 0.9691575953711876 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9562630025642267 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.977555086732302 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-uncased-finetuned-ner |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the biobert_json dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1107 |
|
- Precision: 0.9437 |
|
- Recall: 0.9692 |
|
- F1: 0.9563 |
|
- Accuracy: 0.9776 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.4381 | 1.0 | 612 | 0.1172 | 0.9235 | 0.9536 | 0.9383 | 0.9689 | |
|
| 0.1389 | 2.0 | 1224 | 0.1117 | 0.9247 | 0.9731 | 0.9483 | 0.9717 | |
|
| 0.0935 | 3.0 | 1836 | 0.0962 | 0.9433 | 0.9662 | 0.9546 | 0.9769 | |
|
| 0.0758 | 4.0 | 2448 | 0.0926 | 0.9408 | 0.9736 | 0.9569 | 0.9771 | |
|
| 0.0536 | 5.0 | 3060 | 0.0958 | 0.9404 | 0.9722 | 0.9561 | 0.9769 | |
|
| 0.0476 | 6.0 | 3672 | 0.1029 | 0.9418 | 0.9681 | 0.9548 | 0.9761 | |
|
| 0.0395 | 7.0 | 4284 | 0.1023 | 0.9425 | 0.9720 | 0.9570 | 0.9769 | |
|
| 0.0375 | 8.0 | 4896 | 0.1091 | 0.9426 | 0.9695 | 0.9559 | 0.9771 | |
|
| 0.0299 | 9.0 | 5508 | 0.1080 | 0.9451 | 0.9693 | 0.9570 | 0.9778 | |
|
| 0.0266 | 10.0 | 6120 | 0.1107 | 0.9437 | 0.9692 | 0.9563 | 0.9776 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|