lewtun's picture
lewtun HF staff
Add evaluation results on the conll2003 config and test split of conll2003
d3d8068
|
raw
history blame
2.43 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-cased-ner-conll2003
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9438052359513089
- name: Recall
type: recall
value: 0.9525412319084483
- name: F1
type: f1
value: 0.9481531116508919
- name: Accuracy
type: accuracy
value: 0.9910634321093416
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9116307653519484
verified: true
- name: Precision
type: precision
value: 0.9366103911345081
verified: true
- name: Recall
type: recall
value: 0.9262526113340186
verified: true
- name: F1
type: f1
value: 0.9314027058794109
verified: true
- name: loss
type: loss
value: 0.4366346299648285
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-ner-conll2003
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0355
- Precision: 0.9438
- Recall: 0.9525
- F1: 0.9482
- Accuracy: 0.9911
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.1.0
- Tokenizers 0.12.1