kghanlon's picture
Upload folder using huggingface_hub
97502a2 verified
metadata
license: mit
base_model: FacebookAI/roberta-large
tags:
  - generated_from_trainer
model-index:
  - name: green_as_train_context_roberta-large_20e
    results: []

green_as_train_context_roberta-large_20e

This model is a fine-tuned version of FacebookAI/roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4371
  • Val Accuracy: 0.8913
  • Val Precision: 0.7554
  • Val Recall: 0.5910
  • Val F1: 0.6632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Val Accuracy Val Precision Val Recall Val F1
0.1908 1.0 1012 0.4035 0.8904 0.7844 0.5448 0.6430
0.152 2.0 2024 0.4631 0.8930 0.7440 0.6235 0.6784
0.12 3.0 3036 0.5046 0.8879 0.7028 0.6605 0.6810
0.0757 4.0 4048 0.7762 0.8902 0.7438 0.6003 0.6644
0.0557 5.0 5060 0.8961 0.8846 0.7273 0.5802 0.6455
0.0319 6.0 6072 0.8864 0.8916 0.7338 0.6296 0.6777
0.0235 7.0 7084 0.8025 0.8902 0.7348 0.6157 0.6700
0.0125 8.0 8096 1.1034 0.8916 0.7559 0.5926 0.6644
0.0114 9.0 9108 1.1414 0.8882 0.7422 0.5864 0.6552
0.0147 10.0 10120 1.2555 0.8902 0.7401 0.6065 0.6667
0.0068 11.0 11132 1.2923 0.8879 0.7526 0.5679 0.6473
0.0112 12.0 12144 1.3150 0.8890 0.8024 0.5139 0.6265
0.0059 13.0 13156 1.1883 0.8899 0.7396 0.6049 0.6655
0.0056 14.0 14168 1.3822 0.8871 0.7824 0.5216 0.6259
0.0029 15.0 15180 1.4309 0.8888 0.7741 0.5448 0.6395
0.0021 16.0 16192 1.3541 0.8916 0.7529 0.5972 0.6661
0.004 17.0 17204 1.3666 0.8907 0.7384 0.6142 0.6706
0.0022 18.0 18216 1.4396 0.8896 0.7525 0.5818 0.6562
0.0028 19.0 19228 1.4340 0.8910 0.7539 0.5910 0.6626
0.0001 20.0 20240 1.4371 0.8913 0.7554 0.5910 0.6632

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2