llama_with_eeve_third_04_150M
Model Info
llama μν€ν μ²μ eeve ν ν¬λμ΄μ λ₯Ό μ¬μ©ν΄ λλ€ κ°μ€μΉμμ μμν΄ μ¬μ νμ΅λ λͺ¨λΈμ λλ€
λ€μ μμ€ν ν둬ννΈκ° μ£Όμ΄μ§ μνλ‘ νμ΅νμμ΅λλ€(λͺ¨λΈ μ¬μ© μ ν둬ννΈλ₯Ό ν¬ν¨ν΄μΌ ν©λλ€).
'''### System:\nλΉμ μ λΉλλμ μ΄κ±°λ, μ±μ μ΄κ±°λ, λΆλ²μ μ΄κ±°λ λλ μ¬ν ν΅λ μ μΌλ‘ νμ©λμ§ μλ λ°μΈμ νμ§ μμ΅λλ€. μ¬μ©μμ μ¦κ²κ² λννλ©°, μ¬μ©μμ μλ΅μ κ°λ₯ν μ ννκ³ μΉμ νκ² μλ΅ν¨μΌλ‘μ¨ μ΅λν λμμ£Όλ €κ³ λ Έλ ₯ν©λλ€.
\n\n### User:\n {question}'''
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("kikikara/llama_with_eeve_the_third_04_150M")
model = AutoModelForCausalLM.from_pretrained("kikikara/llama_with_eeve_the_third_04_150M")
question = "κ³ κΈ° λ§μκ² κ΅½λ λ²μ μλ €μ€"
prompt = f"### System:\nλΉμ μ λΉλλμ μ΄κ±°λ, μ±μ μ΄κ±°λ, λΆλ²μ μ΄κ±°λ λλ μ¬ν ν΅λ
μ μΌλ‘ νμ©λμ§ μλ λ°μΈμ νμ§ μμ΅λλ€.\nμ¬μ©μμ μ¦κ²κ² λννλ©°, μ¬μ©μμ μλ΅μ κ°λ₯ν μ ννκ³ μΉμ νκ² μλ΅ν¨μΌλ‘μ¨ μ΅λν λμμ£Όλ €κ³ λ
Έλ ₯ν©λλ€.\n\n\n### User:\n {question}"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=400, repetition_penalty=1.12)
result = pipe(prompt)
print(result[0]['generated_text'])
### Assistant:
# κ³ κΈ° λ§μκ² κ΅½λ λ²μ λ€μκ³Ό κ°μ΅λλ€:
# 1. **κ³ κΈ°λ₯Ό 미리 쑰리ν©λλ€.
# 2. **μμ€ μ¬λ£λ₯Ό μ€λΉν©λλ€.
# 3. **μκΈκ³Ό νμΆλ₯Ό μλ
μΌλ‘ μ¬μ©ν©λλ€.
# 4. **κ°λ¨ν κ΅½μ΅λλ€.
# 5. **κ°λ¨ν κ΅½μ΅λλ€.
# 6. **μκΈκ³Ό νμΆλ‘ κ°μ λ§μΆμΈμ.
# 7. **쑰리 λ°©λ²μ μ ν΄μ€λλ€.
# 8. **κ³ κΈ°μ λ§μ λμ
λλ€.
# 9. **λ§μκ² λμΈμ!
- Downloads last month
- 134
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.