EXL2 quants of jdqwoi/TooManyMixRolePlay-7B-Story_V1

4.00 bits per weight
5.00 bits per weight
6.00 bits per weight
7.00 bits per weight
8.00 bits per weight

TooManyMixRolePlay-7B-Story_V1

TooManyMixRolePlay-7B-Story_V1 is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: jdqwoi/TooManyMixRolePlay-7B-Story
        layer_range: [0, 32]
      - model: jdqwoi/02
        layer_range: [0, 32]
merge_method: slerp
base_model: jdqwoi/TooManyMixRolePlay-7B-Story
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jdqwoi/TooManyMixRolePlay-7B-Story_V1"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kim512/TooManyMixRolePlay-7B-Story_V1-7.0bpw-exl2