File size: 2,457 Bytes
f4fec9c
 
7b58d83
f4fec9c
 
 
 
 
 
 
d5e990a
f4fec9c
 
 
 
d5e990a
f4fec9c
18eea68
5255cd3
f4fec9c
 
 
 
5255cd3
9b7a5d6
 
535fd25
f4fec9c
e05bd5a
f4fec9c
9b7a5d6
 
535fd25
f4fec9c
e05bd5a
f4fec9c
361e233
 
d5e990a
9b7a5d6
5255cd3
18eea68
5255cd3
18eea68
d5e990a
f4fec9c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
library_name: transformers
license: llama3.1
base_model: NousResearch/Hermes-3-Llama-3.1-8B
tags:
- llama-factory
- full
- unsloth
- generated_from_trainer
model-index:
- name: kimhyeongjun/Hermes-3-Llama-3.1-8B-Korean-Finance-Advisor
  results: []
---


# kimhyeongjun/Hermes-3-Llama-3.1-8B-Korean-Finance-Advisor

This is my personal toy project for Chuseok(Korean Thanksgiving Day).

This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the Korean_synthetic_financial_dataset_21K.


## Model description

Everything happened automatically without any user intervention. 

Based on finance PDF data collected directly from the web, we refined the raw data using the 'neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8' model. 
After generating synthetic data based on the cleaned data, we further evaluated the quality of the generated data using the 'meta-llama/Llama-Guard-3-8B' and 'RLHFlow/ArmoRM-Llama3-8B-v0.1' models. 
We then used 'Alibaba-NLP/gte-large-en-v1.5' to extract embeddings and applied Faiss to perform Jaccard distance-based nearest neighbor analysis to construct the final dataset of 21k, which is diverse and sophisticated.

λͺ¨λ“  과정은 μ‚¬μš©μžμ˜ κ°œμž… 없이 μžλ™μœΌλ‘œ μ§„ν–‰λ˜μ—ˆμŠ΅λ‹ˆλ‹€. 

μ›Ήμ—μ„œ 직접 μˆ˜μ§‘ν•œ 금육 κ΄€λ ¨ PDF 데이터λ₯Ό 기반으둜, 돈이 μ—†μ–΄μ„œ 'neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8' λͺ¨λΈμ„ ν™œμš©ν•˜μ—¬ Raw 데이터λ₯Ό μ •μ œν•˜μ˜€μŠ΅λ‹ˆλ‹€. 
μ •μ œλœ 데이터λ₯Ό λ°”νƒ•μœΌλ‘œ ν•©μ„± 데이터λ₯Ό μƒμ„±ν•œ ν›„, 'meta-llama/Llama-Guard-3-8B' 및 'RLHFlow/ArmoRM-Llama3-8B-v0.1' λͺ¨λΈμ„ 톡해 μƒμ„±λœ λ°μ΄ν„°μ˜ ν’ˆμ§ˆμ„ μ‹¬μΈ΅μ μœΌλ‘œ ν‰κ°€ν•˜μ˜€μŠ΅λ‹ˆλ‹€. 
μ΄μ–΄μ„œ 'Alibaba-NLP/gte-large-en-v1.5'λ₯Ό μ‚¬μš©ν•˜μ—¬ μž„λ² λ”©μ„ μΆ”μΆœν•˜κ³ , Faissλ₯Ό μ μš©ν•˜μ—¬ μžμΉ΄λ“œ 거리 기반의 κ·Όμ ‘ 이웃 뢄석을 μˆ˜ν–‰ν•¨μœΌλ‘œμ¨ λ‹€μ–‘ν•˜κ³  μ •κ΅ν•œ μ΅œμ’… 데이터셋 21k을 직접 κ΅¬μ„±ν•˜μ˜€μŠ΅λ‹ˆλ‹€.


![image/png](https://cdn-uploads.huggingface.co/production/uploads/619d8e31c21bf5feb310bd82/Af4pOxdZkt0dULw-QAGmy.png)


## Task duration
3days (20240914~20240916)

## evaluation
Nothing (I had to take the holiday off.)

## sample

![image/png](https://cdn-uploads.huggingface.co/production/uploads/619d8e31c21bf5feb310bd82/gJ6hnvAV2Qx9774AFFwQe.png)

### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1