See axolotl config
axolotl version: 0.4.1
base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: falche/paradox_test_set_200k_sharegpt
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/mistral-nemo-webnovels
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
use_wandb: true
wandb_project: mistral-nemo-webnovels
wandb_entity: augmxnt
wandb_name: mi300x-cyberagent_mistral_nemo_webnovels-fft-dsz3
gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/mistral-nemo-webnovels
This model is a fine-tuned version of cyberagent/Mistral-Nemo-Japanese-Instruct-2408 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6891
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6086 | 0.0008 | 1 | 2.5794 |
1.8703 | 0.5 | 615 | 1.8224 |
1.7873 | 1.0 | 1230 | 1.7534 |
1.6708 | 1.4976 | 1845 | 1.7214 |
1.6567 | 1.9976 | 2460 | 1.6919 |
1.501 | 2.4951 | 3075 | 1.6984 |
1.5237 | 2.9951 | 3690 | 1.6891 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.0+rocm6.2
- Datasets 3.0.1
- Tokenizers 0.20.1
Training Infra
Compute sponsored by []HotAisle](https://huggingface.co/hotaisle) on an 8 x MI300X node. See the WandB Run Logs for additional details.
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kinokokoro/cyberagent-mistral-nemo-webnovels
Base model
mistralai/Mistral-Nemo-Base-2407