Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408
tokenizer_type: AutoTokenizer


load_in_8bit: false
load_in_4bit: false
strict: false


chat_template: chatml
datasets:
  - path: falche/paradox_test_set_200k_sharegpt
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/mistral-nemo-webnovels

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

use_wandb: true
wandb_project: mistral-nemo-webnovels
wandb_entity: augmxnt
wandb_name: mi300x-cyberagent_mistral_nemo_webnovels-fft-dsz3

gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

outputs/mistral-nemo-webnovels

This model is a fine-tuned version of cyberagent/Mistral-Nemo-Japanese-Instruct-2408 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.6086 0.0008 1 2.5794
1.8703 0.5 615 1.8224
1.7873 1.0 1230 1.7534
1.6708 1.4976 1845 1.7214
1.6567 1.9976 2460 1.6919
1.501 2.4951 3075 1.6984
1.5237 2.9951 3690 1.6891

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0+rocm6.2
  • Datasets 3.0.1
  • Tokenizers 0.20.1

Training Infra

Compute sponsored by []HotAisle](https://huggingface.co/hotaisle) on an 8 x MI300X node. See the WandB Run Logs for additional details.

Downloads last month
30
Safetensors
Model size
12.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kinokokoro/cyberagent-mistral-nemo-webnovels