metadata
library_name: transformers
metrics:
- cer
widget:
- src: https://i.ibb.co/QXZFSNx/test7.png
output:
text: รมว.ธรรมนัส ลงพื้นที่
language:
- th
pipeline_tag: image-to-text
thai_trocr_thaigov_v2
Vision Encoder Decoder Models
- Use microsoft/trocr-base-handwritten as encoder.
- Use airesearch/wangchanberta-base-att-spm-uncased as decoder
- Fine-tune on 250k synthetic text images dataset using ThaiGov V2 Corpus
- Use SynthTIGER to generate synthetic text image.
- It is useful to fine-tune any Thai OCR task.
Usage
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
processor = TrOCRProcessor.from_pretrained("kkatiz/thai-trocr-thaigov-v2")
model = VisionEncoderDecoderModel.from_pretrained("kkatiz/thai-trocr-thaigov-v2")
image = Image.open("... your image path").convert("RGB")
pixel_values = processor(image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)