|
--- |
|
library_name: transformers |
|
metrics: |
|
- cer |
|
widget: |
|
- src: "https://i.ibb.co/QXZFSNx/test7.png" |
|
output: |
|
text: รมว.ธรรมนัส ลงพื้นที่ |
|
language: |
|
- th |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
# thai_trocr_thaigov_v2 |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
Vision Encoder Decoder Models |
|
- Use microsoft/trocr-base-handwritten as encoder. |
|
- Use airesearch/wangchanberta-base-att-spm-uncased as decoder |
|
- Fine-tune on 250k synthetic text images dataset using [ThaiGov V2 Corpus](https://github.com/PyThaiNLP/thaigov-v2-corpus) |
|
- Use [SynthTIGER](https://github.com/clovaai/synthtiger) to generate synthetic text image. |
|
- It is useful to fine-tune any Thai OCR task. |
|
|
|
# Usage |
|
|
|
``` python |
|
from PIL import Image |
|
from transformers import TrOCRProcessor, VisionEncoderDecoderModel |
|
|
|
processor = TrOCRProcessor.from_pretrained("kkatiz/thai-trocr-thaigov-v2") |
|
model = VisionEncoderDecoderModel.from_pretrained("kkatiz/thai-trocr-thaigov-v2") |
|
|
|
image = Image.open("... your image path").convert("RGB") |
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
generated_ids = model.generate(pixel_values) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(generated_text) |
|
``` |