|
--- |
|
base_model: microsoft/mpnet-base |
|
datasets: |
|
- sentence-transformers/all-nli |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:100000 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: People on bicycles waiting at an intersection. |
|
sentences: |
|
- More than one person on a bicycle is obeying traffic laws. |
|
- The people are on skateboards. |
|
- People waiting at a light on bikes. |
|
- source_sentence: A dog is in the water. |
|
sentences: |
|
- A white dog with brown spots standing in water. |
|
- A woman in a white outfit holds her purse while on a crowded bus. |
|
- A wakeboarder is traveling across the water behind a ramp. |
|
- source_sentence: The people are sleeping. |
|
sentences: |
|
- A man and young boy asleep in a chair. |
|
- A father and his son cuddle while sleeping. |
|
- Several people are sitting on the back of a truck outside. |
|
- source_sentence: A dog is swimming. |
|
sentences: |
|
- A brown god relaxes on a brick sidewalk. |
|
- The furry brown dog is swimming in the ocean. |
|
- a black dog swimming in the water with a tennis ball in his mouth |
|
- source_sentence: A dog is swimming. |
|
sentences: |
|
- A woman in all black throws a football indoors while man looks at his cellphone |
|
in the background. |
|
- A white dog with a stick in his mouth standing next to a black dog. |
|
- A dog with yellow fur swims, neck deep, in water. |
|
model-index: |
|
- name: MPNet base trained on AllNLI triplets |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli dev |
|
type: all-nli-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9059842041312273 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.09386391251518833 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.900820170109356 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9017314702308628 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9059842041312273 |
|
name: Max Accuracy |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli test |
|
type: all-nli-test |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9185958541382963 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.08019367529126949 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.9142078983204721 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9142078983204721 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9185958541382963 |
|
name: Max Accuracy |
|
--- |
|
|
|
# MPNet base trained on AllNLI triplets |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("korruz/mpnet-base-all-nli-triplet") |
|
# Run inference |
|
sentences = [ |
|
'A dog is swimming.', |
|
'A dog with yellow fur swims, neck deep, in water.', |
|
'A white dog with a stick in his mouth standing next to a black dog.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `all-nli-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:----------| |
|
| cosine_accuracy | 0.906 | |
|
| dot_accuracy | 0.0939 | |
|
| manhattan_accuracy | 0.9008 | |
|
| euclidean_accuracy | 0.9017 | |
|
| **max_accuracy** | **0.906** | |
|
|
|
#### Triplet |
|
* Dataset: `all-nli-test` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9186 | |
|
| dot_accuracy | 0.0802 | |
|
| manhattan_accuracy | 0.9142 | |
|
| euclidean_accuracy | 0.9142 | |
|
| **max_accuracy** | **0.9186** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 100,000 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | |
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy | |
|
|:-----:|:----:|:-------------:|:------------------------:|:-------------------------:| |
|
| 0 | 0 | - | 0.6832 | - | |
|
| 0.032 | 100 | 3.2593 | 0.8010 | - | |
|
| 0.064 | 200 | 1.318 | 0.8152 | - | |
|
| 0.096 | 300 | 1.2552 | 0.8256 | - | |
|
| 0.128 | 400 | 1.3322 | 0.8141 | - | |
|
| 0.16 | 500 | 1.4141 | 0.8224 | - | |
|
| 0.192 | 600 | 1.2339 | 0.8149 | - | |
|
| 0.224 | 700 | 1.2556 | 0.8091 | - | |
|
| 0.256 | 800 | 1.138 | 0.8262 | - | |
|
| 0.288 | 900 | 1.0928 | 0.8311 | - | |
|
| 0.32 | 1000 | 1.0438 | 0.8341 | - | |
|
| 0.352 | 1100 | 1.1159 | 0.8323 | - | |
|
| 0.384 | 1200 | 1.1909 | 0.8472 | - | |
|
| 0.416 | 1300 | 1.2542 | 0.8543 | - | |
|
| 0.448 | 1400 | 1.2359 | 0.8574 | - | |
|
| 0.48 | 1500 | 1.0265 | 0.8712 | - | |
|
| 0.512 | 1600 | 0.8688 | 0.8783 | - | |
|
| 0.544 | 1700 | 0.8819 | 0.8841 | - | |
|
| 0.576 | 1800 | 0.8903 | 0.8931 | - | |
|
| 0.608 | 1900 | 0.9334 | 0.8858 | - | |
|
| 0.64 | 2000 | 1.0225 | 0.9028 | - | |
|
| 0.672 | 2100 | 0.9252 | 0.9034 | - | |
|
| 0.704 | 2200 | 0.9036 | 0.9033 | - | |
|
| 0.736 | 2300 | 0.8122 | 0.9040 | - | |
|
| 0.768 | 2400 | 0.8503 | 0.9058 | - | |
|
| 0.8 | 2500 | 0.8448 | 0.9055 | - | |
|
| 0.832 | 2600 | 0.7918 | 0.9039 | - | |
|
| 0.864 | 2700 | 0.7787 | 0.9025 | - | |
|
| 0.896 | 2800 | 0.8624 | 0.9034 | - | |
|
| 0.928 | 2900 | 0.9513 | 0.9058 | - | |
|
| 0.96 | 3000 | 0.6548 | 0.9072 | - | |
|
| 0.992 | 3100 | 0.0163 | 0.9060 | - | |
|
| 1.0 | 3125 | - | - | 0.9186 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |