Sakura-SOLRCA-Instruct-DPO

(μ£Ό)λ―Έλ””μ–΄κ·Έλ£Ήμ‚¬λžŒκ³Όμˆ²κ³Ό (μ£Ό)마컀의 LLM 연ꡬ μ»¨μ†Œμ‹œμ—„μ—μ„œ 개발된 λͺ¨λΈμž…λ‹ˆλ‹€

Model Details

Model Developers Kyujin Han (kyujinpy)

Method
Using DPO method.
With Intel/orca_dpo_pairs.

I shared the information about my model. (training and code)
Please see: ⭐Sakura-SOLAR.

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
Sakura-SOLRCA-Instruct-DPO 74.05 71.16 88.49 66.17 72.10 82.95 63.46
Sakura-SOLAR-Instruct-DPO-v2 74.14 70.90 88.41 66.48 71.86 83.43 63.76
kyujinpy/Sakura-SOLAR-Instruct 74.40 70.99 88.42 66.33 71.79 83.66 65.20

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/Sakura-SOLRCA-Instruct-DPO"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.05
AI2 Reasoning Challenge (25-Shot) 71.16
HellaSwag (10-Shot) 88.49
MMLU (5-Shot) 66.17
TruthfulQA (0-shot) 72.10
Winogrande (5-shot) 82.95
GSM8k (5-shot) 63.46
Downloads last month
1,961
Safetensors
Model size
10.7B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kyujinpy/Sakura-SOLRCA-Instruct-DPO

Quantizations
3 models

Dataset used to train kyujinpy/Sakura-SOLRCA-Instruct-DPO

Spaces using kyujinpy/Sakura-SOLRCA-Instruct-DPO 24

Collection including kyujinpy/Sakura-SOLRCA-Instruct-DPO

Evaluation results