Text Generation
Transformers
Safetensors
mistral
text-generation-inference
Inference Endpoints
Edit model card

mCoT: Multilingual Instruction Tuning for Reasoning Consistency in Language Models

Paper: https://arxiv.org/abs/2406.02301

Code: https://github.com/laihuiyuan/mCoT

Dataset: https://huggingface.co/datasets/laihuiyuan/mCoT-MATH

Introduction

We introduce mCoT, a 7B parameter model for multilingual math reasoning that achieves impressive multilingual reasoning consistency across multiple languages. Based on Mistral-7B-v0.1, mCoT is trained on mCoT-MATH, the first large-scale multilingual math CoT reasoning dataset containing around 6.3 million samples for 11 diverse languages.

Results on MGSM

Language SW BN TE TH JA ZH RU ES FR DE EN
GPT-3 few-shot 11.2 6.4 0.4 0.8 26.0 40.0 28.4 40.4 37.6 36.0 53.6
GPT-3.5-En 2-shot 40.0 7.6 - 15.6 46.8 52.8 50.4 61.2 59.2 62.0 67.2
GPT4-En 2-shot 64.4 17.6 - 40.4 71.6 70.0 64.0 71.2 72.0 73.6 80.0
PaLM-540B few-shot 35.2 46.0 45.6 52.8 40.0 46.8 48.4 56.8 46.4 49.2 62.4
WizardMath-7B 3.4 2.0 - 4.0 24.0 22.4 30.8 34.8 30.4 30.4 47.6
MathOctopus-7B 38.4 33.2 - 36.4 35.6 45.2 48.4 45.2 38.0 43.6 54.8
MathOctopus-Mistral-7B 51.6 44.0 - 48.8 48.0 51.6 49.6 53.2 47.2 50.0 58.4
xCoT-7B 48.4 40.4 42.8 49.2 50.0 50.0 50.0 48.8 49.6 47.2 48.4
WizardMath-13B 5.6 6.4 - 5.6 22.0 28.0 34.4 45.6 42.0 40.4 52.8
MathOctopus-13B 46.0 42.0 - 46.0 39.6 51.2 47.6 53.2 49.6 49.2 51.6
xCoT-13B 51.6 50.0 47.2 50.0 49.6 54.0 56.8 54.8 46.4 52.4 54.4
mCoT-7B 67.2 65.6 62.4 67.6 65.2 64.8 66.8 68.4 63.8 61.2 71.6

Results on MSVAMP

Language SW BN TH JA ZH RU ES FR DE EN AVG
GPT-3.5-En zero-shot 63.2 3.1 24.4 63.3 72.4 62.3 69.5 71.9 66.7 76.1 57.3
GPT-3.5-En 2-shot 68.4 14.4 46.0 74.0 78.4 70.9 74.6 78.2 73.9 81.2 66.0
GPT4-En 2-shot 75.7 31.2 68.1 74.8 78.9 77.9 81.5 83.9 78.1 80.1 73.0
PaLM-540B few-shot 35.2 46.0 45.6 52.8 40.0 46.8 48.4 56.8 46.4 49.2 62.4
WizardMath-7B 10.3 16.1 6.3 26.7 26.8 33.7 42.9 39.9 39.6 45.1 27.0
MathOctopus-7B 42.3 32.8 40.5 43.2 43.2 42.1 44.5 45.3 43.1 46.8 42.4
MathOctopus-Mistral-7B 41.2 36.7 40.2 41.5 43.1 44.0 47.0 49.0 46.4 49.7 43.9
WizardMath-13B 12.5 13.7 16.3 29.5 37.0 43.8 50.4 49.4 48.7 56.3 35.8
MathOctopus-13B 43.4 34.2 39.5 43.1 46.4 48.2 48.2 49.9 47.7 44.6 44.5
mCoT-7B 55.0 53.7 56.4 58.8 58.2 58.1 58.9 58.8 61.1 58.3 57.7

Prompt Template

# Template
template = "Question: \n{question} \nAnswer: \n{language}\n"

# Language prompt
bn = "আসুন ধাপে ধাপে চিন্তা করি।"
de = "Denken wir Schritt für Schritt."
en = "Let's think step by step."
es = "Pensemos paso a paso."
fr = "Réfléchissons étape par étape."
ja = "段階的に考えてみましょう。"
ru = "Давайте думать поэтапно."
sw = "Hebu fikiria hatua kwa hatua."
te = "అంచెలంచెలుగా ఆలోచిద్దాం."
th = "ลองคิดทีละขั้นตอน"
zh = "让我们一步步思考。"

# Math question
math_en = "A robe takes 2 bolts of blue fiber and half that much white fiber.  How many bolts in total does it take?"

# An example for the English question
prompt = template.format(question=math_en, language=en)

Citation

If you use any content from this repository, please cite our paper:

@inproceedings{lai-etal-2024-mcot,
    title = "mCoT: Multilingual Instruction Tuning for Reasoning Consistency
    in Language Models",
    author = "Lai, Huiyuan and Nissim, Malvina",
    booktitle = "Proceedings of the 62nd Annual Meeting of the Association
    for Computational Linguistics,
    month = aug,
    address = "Bangkok, Thailand",
    year = "2024",
    publisher = "Association for Computational Linguistics"
}
Downloads last month
326
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.