|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: edos-2023-baseline-xlm-roberta-base-label_vector |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# edos-2023-baseline-xlm-roberta-base-label_vector |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5797 |
|
- F1: 0.2746 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 5 |
|
- num_epochs: 12 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 2.1596 | 1.18 | 100 | 1.9772 | 0.0891 | |
|
| 1.8651 | 2.35 | 200 | 1.7720 | 0.1159 | |
|
| 1.6848 | 3.53 | 300 | 1.7193 | 0.1892 | |
|
| 1.5532 | 4.71 | 400 | 1.6794 | 0.2191 | |
|
| 1.466 | 5.88 | 500 | 1.6095 | 0.2419 | |
|
| 1.3562 | 7.06 | 600 | 1.5771 | 0.2694 | |
|
| 1.2909 | 8.24 | 700 | 1.5761 | 0.2707 | |
|
| 1.2027 | 9.41 | 800 | 1.5747 | 0.2764 | |
|
| 1.192 | 10.59 | 900 | 1.5893 | 0.2686 | |
|
| 1.1256 | 11.76 | 1000 | 1.5797 | 0.2746 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|