Edit model card

DeepSeek-V2-Chat-GGUF

image/jpeg

Quantizised from https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat

Using llama.cpp b3026 for quantizisation. Given the rapid release of llama.cpp builds, this will likely change over time.

Please set the metadata KV overrides below.

Usage:

Downloading the bf16:

  • Find the relevant directory
  • Download all files
  • Run merge.py
  • Merged GGUF should appear

Downloading the quantizations:

  • Find the relevant directory
  • Download all files
  • Point to the first split (most programs should load all the splits automatically now)

Running in llama.cpp:

To start in command line chat mode (chat completion):

main -m DeepSeek-V2-Chat.{quant}.gguf -c {context length} --color -c (-i)

To use llama.cpp's OpenAI compatible server:

server \
  -m DeepSeek-V2-Chat.{quant}.gguf \
  -c {context_length} \
  (--color [recommended: colored output in supported terminals]) \
  (-i [note: interactive mode]) \
  (--mlock [note: avoid using swap]) \
  (--verbose) \
  (--log-disable [note: disable logging to file, may be useful for prod]) \
  (--metrics [note: prometheus compatible monitoring endpoint]) \
  (--api-key [string]) \
  (--port [int]) \
  (--flash-attn [note: must be fully offloaded to supported GPU])

Making an importance matrix:

imatrix \
  -m DeepSeek-V2-Chat.{quant}.gguf \
  -f groups_merged.txt \
  --verbosity [0, 1, 2] \
  -ngl {GPU offloading; must build with CUDA} \
  --ofreq {recommended: 1}

Making a quant:

quantize \
  DeepSeek-V2-Chat.bf16.gguf \
  DeepSeek-V2-Chat.{quant}.gguf \
  {quant} \
  (--imatrix [file])

Note: Use iMatrix quants only if you can fully offload to GPU, otherwise speed will be affected negatively.

Quants:

Quant Status Size Description KV Metadata Weighted Notes
BF16 Available 439 GB Lossless :) Old No Q8_0 is sufficient for most cases
Q8_0 Available 233.27 GB High quality recommended Updated Yes
Q8_0 Available ~110 GB High quality recommended Updated Yes
Q5_K_M Available 155 GB Medium-high quality recommended Updated Yes
Q4_K_M Available 132 GB Medium quality recommended Old No
Q3_K_M Available 104 GB Medium-low quality Updated Yes
IQ3_XS Available 89.6 GB Better than Q3_K_M Old Yes
Q2_K Available 80.0 GB Low quality not recommended Old No
IQ2_XXS Available 61.5 GB Lower quality not recommended Old Yes
IQ1_M Uploading 27.3 GB Extremely low quality not recommended Old Yes Testing purposes; use IQ2 at least

Planned Quants (weighted/iMatrix):

Planned Quant Notes
Q5_K_S
Q4_K_S
Q3_K_S
IQ4_XS
IQ2_XS
IQ2_S
IQ2_M

Metadata KV overrides (pass them using --override-kv, can be specified multiple times):

deepseek2.attention.q_lora_rank=int:1536
deepseek2.attention.kv_lora_rank=int:512
deepseek2.expert_shared_count=int:2
deepseek2.expert_feed_forward_length=int:1536
deepseek2.expert_weights_scale=float:16
deepseek2.leading_dense_block_count=int:1
deepseek2.rope.scaling.yarn_log_multiplier=float:0.0707

License:

  • DeepSeek license for model weights, which can be found in the LICENSE file in the root of this repo
  • MIT license for any repo code

Performance:

~1.5t/s with Ryzen 3 3700x (96gb 3200mhz) [Q2_K]

iMatrix:

Find imatrix.dat in the root of this repo, made with a Q2_K quant containing 62 chunks (see here for info: https://github.com/ggerganov/llama.cpp/issues/5153#issuecomment-1913185693)

Using groups_merged.txt, find it here: https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384

Censorship:

This model is a bit censored, finetuning on toxic DPO might help.

Downloads last month
668
GGUF
Model size
236B params
Architecture
deepseek2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.