How to use ・ 使い方
We recommend on running with at least 4 A100 cards A100の4枚の環境がおすすめです
Huggingface
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
tokenizer = AutoTokenizer.from_pretrained("lightblue/ao-karasu-72B")
model = AutoModelForCausalLM.from_pretrained("lightblue/ao-karasu-72B", device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)
vLLM
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/aokarasu-72B", tensor_parallel_size=4)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Training details 学習詳細
Training data 学習データ
Roughly 20 million characters samples from a dataset of more than 1.1 billion characters, which was made up of:
~450 million characters from Wikipedia-based QA (same as Qarasu)
~200 million characters from technical blogs (new)
~200 million characters from Japanese QA site answers (new)
~100 million characters from LLM generated prompts and responses (same as Qarasu)
~70 million characters from news articles (new)
Training schedule
Training for ~1 day on a A100 (80GB) GPU
- Downloads last month
- 194
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.