ao-karasu-72B / README.md
shun1taniguchi's picture
Update README.md (#1)
a83de2c verified
|
raw
history blame
2.53 kB
---
library_name: transformers
tags: []
---
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/e2VLH4eBlq3678PsI_itw.png" alt="drawing" width="512"/>
</p>
# How to use ・ 使い方
We recommend on running with at least 4 A100 cards
A100の4枚の環境がおすすめです
### Huggingface
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
tokenizer = AutoTokenizer.from_pretrained("lightblue/ao-karasu-72B")
model = AutoModelForCausalLM.from_pretrained("lightblue/ao-karasu-72B", device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)
```
### vLLM
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/aokarasu-72B", tensor_parallel_size=4)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
# Training details 学習詳細
[English dev blog](https://note.com/peter_lightblue/n/n483d194d3614?sub_rt=share_pw)
[日本語ブログ](https://note.com/lightblue_tech/n/nfda12435b262?sub_rt=share_pw)
# Training data 学習データ
Roughly 20 million characters samples from a dataset of more than 1.1 billion characters, which was made up of:
~450 million characters from Wikipedia-based QA (same as Qarasu)
~200 million characters from technical blogs (new)
~200 million characters from Japanese QA site answers (new)
~100 million characters from LLM generated prompts and responses (same as Qarasu)
~70 million characters from news articles (new)
# Training schedule
Training for ~1 day on a A100 (80GB) GPU