|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- wiki_lingua |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: wiki_lingua-id-8-3-5.6e-05-mt5-small-finetuned |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: wiki_lingua |
|
type: wiki_lingua |
|
config: id |
|
split: test |
|
args: id |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 18.0064 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wiki_lingua-id-8-3-5.6e-05-mt5-small-finetuned |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wiki_lingua dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3388 |
|
- Rouge1: 18.0064 |
|
- Rouge2: 5.5315 |
|
- Rougel: 16.1048 |
|
- Rougelsum: 17.6763 |
|
|
|
# Baseline LEAD-64 |
|
- Rouge1: 20.32 |
|
- Rouge2: 4.94 |
|
- Rougel: 14.0 |
|
- Rougelsum: 14.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 3.4701 | 1.0 | 4029 | 2.4403 | 17.0314 | 5.0932 | 15.3277 | 16.713 | |
|
| 2.8067 | 2.0 | 8058 | 2.3568 | 17.6738 | 5.3508 | 15.8002 | 17.336 | |
|
| 2.7095 | 3.0 | 12087 | 2.3388 | 18.0064 | 5.5315 | 16.1048 | 17.6763 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.2 |
|
|