File size: 2,935 Bytes
5dd83da
273ba0b
 
5dd83da
273ba0b
bacb885
273ba0b
 
 
6105f47
273ba0b
7f727a8
273ba0b
6105f47
273ba0b
 
 
 
6105f47
273ba0b
 
 
 
 
6105f47
273ba0b
 
 
 
 
 
 
8e06d6f
 
273ba0b
 
6105f47
273ba0b
6105f47
 
 
 
273ba0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6105f47
 
273ba0b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0  
inference: false  
---

# SLIM-TAGS

<!-- Provide a quick summary of what the model is/does. -->

**slim-tags** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.  

slim-tags has been fine-tuned for **auto-generating relevant tags and points-of-interest** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:  

&nbsp;&nbsp;&nbsp;&nbsp;`{"tags": ["tag1", "tag2", "tag3",...]}`


SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow.  

Each slim model has a 'quantized tool' version, e.g.,  [**'slim-tags-tool'**](https://huggingface.co/llmware/slim-tags-tool).  


## Prompt format:

`function = "classify"`  
`params = "tags"`  
`prompt = "<human> " + {text} + "\n" + `  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`  


<details>
<summary>Transformers Script </summary>

    model = AutoModelForCausalLM.from_pretrained("llmware/slim-tags")
    tokenizer = AutoTokenizer.from_pretrained("llmware/slim-tags")

    function = "classify"
    params = "tags"

    text = "Citibank announced a reduction in its targets for economic growth in France and the UK last week " 
           "in light of ongoing concerns about inflation and unemployment, especially in large employers " 
           "such as Airbus."  
           
    prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"

    inputs = tokenizer(prompt, return_tensors="pt")
    start_of_input = len(inputs.input_ids[0])

    outputs = model.generate(
        inputs.input_ids.to('cpu'),
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True,
        temperature=0.3,
        max_new_tokens=100
    )

    output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True)

    print("output only: ", output_only)  

    # here's the fun part
    try:
        output_only = ast.literal_eval(llm_string_output)
        print("success - converted to python dictionary automatically")
    except:
        print("fail - could not convert to python dictionary automatically - ", llm_string_output)
   
   </details>  
 
<details>  



    
<summary>Using as Function Call in LLMWare</summary>

    from llmware.models import ModelCatalog
    slim_model = ModelCatalog().load_model("llmware/slim-tags")
    response = slim_model.function_call(text,params=["tags"], function="classify")

    print("llmware - llm_response: ", response)

</details>  

    
## Model Card Contact

Darren Oberst & llmware team  

[Join us on Discord](https://discord.gg/MhZn5Nc39h)