Edit model card

Model Card of lmqg/mt5-base-frquad-qg

This model is fine-tuned version of google/mt5-base for question generation task on the lmqg/qg_frquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-base-frquad-qg")

# model prediction
questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-frquad-qg")
output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")

Evaluation

Score Type Dataset
BERTScore 77.81 default lmqg/qg_frquad
Bleu_1 25.06 default lmqg/qg_frquad
Bleu_2 13.73 default lmqg/qg_frquad
Bleu_3 8.93 default lmqg/qg_frquad
Bleu_4 6.14 default lmqg/qg_frquad
METEOR 15.55 default lmqg/qg_frquad
MoverScore 54.58 default lmqg/qg_frquad
ROUGE_L 25.88 default lmqg/qg_frquad
  • Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 86.41 default lmqg/qg_frquad
QAAlignedF1Score (MoverScore) 60.19 default lmqg/qg_frquad
QAAlignedPrecision (BERTScore) 86.42 default lmqg/qg_frquad
QAAlignedPrecision (MoverScore) 60.19 default lmqg/qg_frquad
QAAlignedRecall (BERTScore) 86.4 default lmqg/qg_frquad
QAAlignedRecall (MoverScore) 60.18 default lmqg/qg_frquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 68.59 default lmqg/qg_frquad
QAAlignedF1Score (MoverScore) 47.87 default lmqg/qg_frquad
QAAlignedPrecision (BERTScore) 67.59 default lmqg/qg_frquad
QAAlignedPrecision (MoverScore) 47.42 default lmqg/qg_frquad
QAAlignedRecall (BERTScore) 69.69 default lmqg/qg_frquad
QAAlignedRecall (MoverScore) 48.36 default lmqg/qg_frquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_frquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-base
  • max_length: 512
  • max_length_output: 32
  • epoch: 24
  • batch: 4
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 16
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results

  • BLEU4 (Question Generation) on lmqg/qg_frquad
    self-reported
    6.140
  • ROUGE-L (Question Generation) on lmqg/qg_frquad
    self-reported
    25.880
  • METEOR (Question Generation) on lmqg/qg_frquad
    self-reported
    15.550
  • BERTScore (Question Generation) on lmqg/qg_frquad
    self-reported
    77.810
  • MoverScore (Question Generation) on lmqg/qg_frquad
    self-reported
    54.580
  • QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquad
    self-reported
    86.410
  • QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquad
    self-reported
    86.400
  • QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquad
    self-reported
    86.420
  • QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquad
    self-reported
    60.190
  • QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_frquad
    self-reported
    60.180