metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: ru
datasets:
- lmqg/qg_ruquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев,
поначалу априорно выдвинув идею о температуре, при которой высота мениска
будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.
example_title: Question Generation Example 1
- text: >-
Однако, франкоязычный <hl> Квебек <hl> практически никогда не включается в
состав Латинской Америки.
example_title: Question Generation Example 2
- text: >-
Классическим примером международного синдиката XX века была группа
компаний <hl> Де Бирс <hl> , которая в 1980-е годы контролировала до 90 %
мировой торговли алмазами.
example_title: Question Generation Example 3
model-index:
- name: lmqg/mt5-base-ruquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_ruquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 17.63
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 33.02
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 28.48
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 85.82
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 64.56
- name: BLEU4 (Question & Answer Generation (with Gold Answer))
type: bleu4_question_answer_generation_with_gold_answer
value: 19.28
- name: ROUGE-L (Question & Answer Generation (with Gold Answer))
type: rouge_l_question_answer_generation_with_gold_answer
value: 52.09
- name: METEOR (Question & Answer Generation (with Gold Answer))
type: meteor_question_answer_generation_with_gold_answer
value: 45.42
- name: BERTScore (Question & Answer Generation (with Gold Answer))
type: bertscore_question_answer_generation_with_gold_answer
value: 90.95
- name: MoverScore (Question & Answer Generation (with Gold Answer))
type: moverscore_question_answer_generation_with_gold_answer
value: 69.57
- name: >-
QAAlignedF1Score-BERTScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 91.1
- name: >-
QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold
Answer)) [Gold Answer]
type: >-
qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 91.09
- name: >-
QAAlignedPrecision-BERTScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 91.11
- name: >-
QAAlignedF1Score-MoverScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 70.06
- name: >-
QAAlignedRecall-MoverScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 70.04
- name: >-
QAAlignedPrecision-MoverScore (Question & Answer Generation (with
Gold Answer)) [Gold Answer]
type: >-
qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 70.07
Model Card of lmqg/mt5-base-ruquad-qg
This model is fine-tuned version of google/mt5-base for question generation task on the lmqg/qg_ruquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-base
- Language: ru
- Training data: lmqg/qg_ruquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ru", model="lmqg/mt5-base-ruquad-qg")
# model prediction
questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-ruquad-qg")
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 85.82 | default | lmqg/qg_ruquad |
Bleu_1 | 33.04 | default | lmqg/qg_ruquad |
Bleu_2 | 26.31 | default | lmqg/qg_ruquad |
Bleu_3 | 21.42 | default | lmqg/qg_ruquad |
Bleu_4 | 17.63 | default | lmqg/qg_ruquad |
METEOR | 28.48 | default | lmqg/qg_ruquad |
MoverScore | 64.56 | default | lmqg/qg_ruquad |
ROUGE_L | 33.02 | default | lmqg/qg_ruquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 90.95 | default | lmqg/qg_ruquad |
Bleu_1 | 47.1 | default | lmqg/qg_ruquad |
Bleu_2 | 35.2 | default | lmqg/qg_ruquad |
Bleu_3 | 26.68 | default | lmqg/qg_ruquad |
Bleu_4 | 19.28 | default | lmqg/qg_ruquad |
METEOR | 45.42 | default | lmqg/qg_ruquad |
MoverScore | 69.57 | default | lmqg/qg_ruquad |
QAAlignedF1Score (BERTScore) | 91.1 | default | lmqg/qg_ruquad |
QAAlignedF1Score (MoverScore) | 70.06 | default | lmqg/qg_ruquad |
QAAlignedPrecision (BERTScore) | 91.11 | default | lmqg/qg_ruquad |
QAAlignedPrecision (MoverScore) | 70.07 | default | lmqg/qg_ruquad |
QAAlignedRecall (BERTScore) | 91.09 | default | lmqg/qg_ruquad |
QAAlignedRecall (MoverScore) | 70.04 | default | lmqg/qg_ruquad |
ROUGE_L | 52.09 | default | lmqg/qg_ruquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_ruquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 16
- batch: 4
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}