Model Card of lmqg/mt5-small-esquad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")
# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 84.07 | default | lmqg/qg_esquad |
Bleu_1 | 26.03 | default | lmqg/qg_esquad |
Bleu_2 | 17.75 | default | lmqg/qg_esquad |
Bleu_3 | 12.88 | default | lmqg/qg_esquad |
Bleu_4 | 9.61 | default | lmqg/qg_esquad |
METEOR | 22.71 | default | lmqg/qg_esquad |
MoverScore | 59.06 | default | lmqg/qg_esquad |
ROUGE_L | 24.62 | default | lmqg/qg_esquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 89.43 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 63.73 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 89.44 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 63.75 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 89.41 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 63.72 | default | lmqg/qg_esquad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/mt5-small-esquad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 79.89 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 54.82 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 77.46 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 53.31 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 82.56 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 56.52 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 16
- batch: 64
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train lmqg/mt5-small-esquad-qg
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_esquadself-reported9.610
- ROUGE-L (Question Generation) on lmqg/qg_esquadself-reported24.620
- METEOR (Question Generation) on lmqg/qg_esquadself-reported22.710
- BERTScore (Question Generation) on lmqg/qg_esquadself-reported84.070
- MoverScore (Question Generation) on lmqg/qg_esquadself-reported59.060
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquadself-reported89.430
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquadself-reported89.410
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquadself-reported89.440
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquadself-reported63.730
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquadself-reported63.720