Edit model card

Model Card of lmqg/mt5-small-frquad-qag

This model is fine-tuned version of google/mt5-small for question & answer pair generation task on the lmqg/qag_frquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-small-frquad-qag")

# model prediction
question_answer_pairs = model.generate_qa("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-frquad-qag")
output = pipe("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")

Evaluation

Score Type Dataset
QAAlignedF1Score (BERTScore) 77.23 default lmqg/qag_frquad
QAAlignedF1Score (MoverScore) 52.36 default lmqg/qag_frquad
QAAlignedPrecision (BERTScore) 76.76 default lmqg/qag_frquad
QAAlignedPrecision (MoverScore) 52.19 default lmqg/qag_frquad
QAAlignedRecall (BERTScore) 77.74 default lmqg/qag_frquad
QAAlignedRecall (MoverScore) 52.54 default lmqg/qag_frquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_frquad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 256
  • epoch: 13
  • batch: 8
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 8
  • label_smoothing: 0.0

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results

  • QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_frquad
    self-reported
    77.230
  • QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_frquad
    self-reported
    77.740
  • QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_frquad
    self-reported
    76.760
  • QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_frquad
    self-reported
    52.360
  • QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_frquad
    self-reported
    52.540
  • QAAlignedPrecision-MoverScore (Question & Answer Generation) on lmqg/qag_frquad
    self-reported
    52.190