Model Card of lmqg/mt5-small-frquad-qg-ae
This model is fine-tuned version of google/mt5-small for question generation and answer extraction jointly on the lmqg/qg_frquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: fr
- Training data: lmqg/qg_frquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-small-frquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-frquad-qg-ae")
# answer extraction
answer = pipe("generate question: Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
# question generation
question = pipe("extract answers: Pourtant, la strophe spensérienne, utilisée cinq fois avant que ne commence le chœur, constitue en soi un vecteur dont les répétitions structurelles, selon Ricks, relèvent du pur lyrisme tout en constituant une menace potentielle. Après les huit sages pentamètres iambiques, l'alexandrin final <hl> permet une pause <hl>, « véritable illusion d'optique » qu'accentuent les nombreuses expressions archaïsantes telles que did swoon, did seem, did go, did receive, did make, qui doublent le prétérit en un temps composé et paraissent à la fois « très précautionneuses et très peu pressées ».")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 79.9 | default | lmqg/qg_frquad |
Bleu_1 | 27.6 | default | lmqg/qg_frquad |
Bleu_2 | 16.31 | default | lmqg/qg_frquad |
Bleu_3 | 11 | default | lmqg/qg_frquad |
Bleu_4 | 7.75 | default | lmqg/qg_frquad |
METEOR | 17.62 | default | lmqg/qg_frquad |
MoverScore | 56.44 | default | lmqg/qg_frquad |
ROUGE_L | 28.06 | default | lmqg/qg_frquad |
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 79.7 | default | lmqg/qg_frquad |
QAAlignedF1Score (MoverScore) | 54.22 | default | lmqg/qg_frquad |
QAAlignedPrecision (BERTScore) | 77.29 | default | lmqg/qg_frquad |
QAAlignedPrecision (MoverScore) | 52.84 | default | lmqg/qg_frquad |
QAAlignedRecall (BERTScore) | 82.36 | default | lmqg/qg_frquad |
QAAlignedRecall (MoverScore) | 55.76 | default | lmqg/qg_frquad |
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 46.96 | default | lmqg/qg_frquad |
AnswerF1Score | 67.44 | default | lmqg/qg_frquad |
BERTScore | 87.84 | default | lmqg/qg_frquad |
Bleu_1 | 40.67 | default | lmqg/qg_frquad |
Bleu_2 | 35.92 | default | lmqg/qg_frquad |
Bleu_3 | 32.1 | default | lmqg/qg_frquad |
Bleu_4 | 28.71 | default | lmqg/qg_frquad |
METEOR | 37.9 | default | lmqg/qg_frquad |
MoverScore | 76.45 | default | lmqg/qg_frquad |
ROUGE_L | 43.93 | default | lmqg/qg_frquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_frquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 18
- batch: 64
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_frquadself-reported7.750
- ROUGE-L (Question Generation) on lmqg/qg_frquadself-reported28.060
- METEOR (Question Generation) on lmqg/qg_frquadself-reported17.620
- BERTScore (Question Generation) on lmqg/qg_frquadself-reported79.900
- MoverScore (Question Generation) on lmqg/qg_frquadself-reported56.440
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_frquadself-reported79.700
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_frquadself-reported82.360
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_frquadself-reported77.290
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_frquadself-reported54.220
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_frquadself-reported55.760