Pythia-2.8b DPO finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-2.8b for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-2.8b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.3157 ± 0.0136
none 0 acc_norm 0.3447 ± 0.0139
arc_easy 1 none 0 acc 0.6591 ± 0.0097
none 0 acc_norm 0.6002 ± 0.0101
boolq 2 none 0 acc 0.6239 ± 0.0085
hellaswag 1 none 0 acc 0.4671 ± 0.0050
none 0 acc_norm 0.6107 ± 0.0049
lambada_openai 1 none 0 perplexity 4.8811 ± 0.1354
none 0 acc 0.6264 ± 0.0067
openbookqa 1 none 0 acc 0.2820 ± 0.0201
none 0 acc_norm 0.4040 ± 0.0220
piqa 1 none 0 acc 0.7568 ± 0.0100
none 0 acc_norm 0.7557 ± 0.0100
sciq 1 none 0 acc 0.8900 ± 0.0099
none 0 acc_norm 0.8340 ± 0.0118
wikitext 2 none 0 word_perplexity 13.9186 ± N/A
none 0 byte_perplexity 1.6363 ± N/A
none 0 bits_per_byte 0.7104 ± N/A
winogrande 1 none 0 acc 0.6046 ± 0.0137

hf (pretrained=lomahony/pythia-2.8b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.3498 ± 0.0139
none 5 acc_norm 0.3823 ± 0.0142
arc_easy 1 none 5 acc 0.6940 ± 0.0095
none 5 acc_norm 0.6940 ± 0.0095
boolq 2 none 5 acc 0.6440 ± 0.0084
hellaswag 1 none 5 acc 0.4596 ± 0.0050
none 5 acc_norm 0.6096 ± 0.0049
lambada_openai 1 none 5 perplexity 6.9027 ± 0.2030
none 5 acc 0.5614 ± 0.0069
openbookqa 1 none 5 acc 0.2920 ± 0.0204
none 5 acc_norm 0.3820 ± 0.0218
piqa 1 none 5 acc 0.7601 ± 0.0100
none 5 acc_norm 0.7563 ± 0.0100
sciq 1 none 5 acc 0.9380 ± 0.0076
none 5 acc_norm 0.9290 ± 0.0081
wikitext 2 none 5 word_perplexity 13.9186 ± N/A
none 5 byte_perplexity 1.6363 ± N/A
none 5 bits_per_byte 0.7104 ± N/A
winogrande 1 none 5 acc 0.6006 ± 0.0138
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-2.8b-helpful-dpo

Collection including lomahony/pythia-2.8b-helpful-dpo