|
--- |
|
base_model: |
|
- macadeliccc/MBX-7B-v3-DPO |
|
- mlabonne/OmniBeagle-7B |
|
tags: |
|
- mergekit |
|
- merge |
|
license: cc |
|
--- |
|
# OmniCorso-7B |
|
|
|
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/PaG7ByWy1qnh_tcSuh35U.webp) |
|
|
|
## Code Example |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B") |
|
|
|
messages = [ |
|
{"role": "system", "content": "Respond to the users request like a pirate"}, |
|
{"role": "user", "content": "Can you write me a quicksort algorithm?"} |
|
] |
|
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
``` |
|
|
|
The following models were included in the merge: |
|
* [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO) |
|
* [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) |
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: mlabonne/OmniBeagle-7B |
|
layer_range: [0, 32] |
|
- model: macadeliccc/MBX-7B-v3-DPO |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: macadeliccc/MBX-7B-v3-DPO |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
|
|
``` |
|
|
|
## Quantizations |
|
|
|
### GGUF |
|
|
|
+ [iMatrix](https://huggingface.co/macadeliccc/OmniCorso-7B-GGUF) |
|
|
|
### Exllamav2 |
|
|
|
Quants are available thanks to user bartowski, check them out [here](https://huggingface.co/bartowski/OmniCorso-7B-exl2) |
|
|
|
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | |
|
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ | |
|
| [8_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | |
|
| [6_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | |
|
| [5_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | |
|
| [4_25](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | |
|
| [3_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | |
|
|
|
|
|
## Evaluations |
|
|
|
<pre>----Benchmark Complete---- |
|
2024-02-11 15:34:40 |
|
Time taken: 178.3 mins |
|
Prompt Format: ChatML |
|
Model: macadeliccc/OmniCorso-7B |
|
Score (v2): 73.75 |
|
Parseable: 167.0 |
|
--------------- |
|
Batch completed |
|
Time taken: 178.3 mins |
|
--------------- |
|
</pre> |