Piccolo-math-2x7b

In loving memory of my dog Klaus (Piccolo)

~ Piccolo (Italian): the little one ~

piccolo.png

Code Example

Inference and Evaluation colab available here

from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.
    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

model_id = "macadeliccc/piccolo-math-2x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)

prompt = "What is the best way to train Cane Corsos?"

print("Response:")
print(generate_response(prompt), "\n")

The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.

Evaluations

Model AGIEval GPT4All TruthfulQA Bigbench Average
piccolo-math-2x7b 43.89 74.98 63.96 44.99 56.96

EQ Bench

Benchmark Complete:

  • 2024-01-24 00:00:40
  • Time taken: 183.3 mins
  • Prompt Format: Mistral
  • Model: macadeliccc/piccolo-math-2x7b
  • Score (v2): 70.74
  • Parseable: 167.0

Batch completed Time taken: 183.3 mins

AGIEval

Task Version Metric Value Stderr
agieval_aqua_rat 0 acc 24.41 ± 2.70
acc_norm 24.80 ± 2.72
agieval_logiqa_en 0 acc 35.79 ± 1.88
acc_norm 36.71 ± 1.89
agieval_lsat_ar 0 acc 23.48 ± 2.80
acc_norm 23.91 ± 2.82
agieval_lsat_lr 0 acc 49.22 ± 2.22
acc_norm 50.00 ± 2.22
agieval_lsat_rc 0 acc 63.94 ± 2.93
acc_norm 64.31 ± 2.93
agieval_sat_en 0 acc 77.18 ± 2.93
acc_norm 76.70 ± 2.95
agieval_sat_en_without_passage 0 acc 45.15 ± 3.48
acc_norm 44.66 ± 3.47
agieval_sat_math 0 acc 33.64 ± 3.19
acc_norm 30.00 ± 3.10

Average: 43.89%

GPT4All

Task Version Metric Value Stderr
arc_challenge 0 acc 61.86 ± 1.42
acc_norm 62.88 ± 1.41
arc_easy 0 acc 84.34 ± 0.75
acc_norm 80.47 ± 0.81
boolq 1 acc 86.88 ± 0.59
hellaswag 0 acc 68.56 ± 0.46
acc_norm 85.16 ± 0.35
openbookqa 0 acc 37.00 ± 2.16
acc_norm 47.80 ± 2.24
piqa 0 acc 82.21 ± 0.89
acc_norm 83.68 ± 0.86
winogrande 0 acc 77.98 ± 1.16

Average: 74.98%

TruthfulQA

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 47.37 ± 1.75
mc2 63.96 ± 1.57

Average: 63.96%

Bigbench

Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 55.26 ± 3.62
bigbench_date_understanding 0 multiple_choice_grade 63.14 ± 2.51
bigbench_disambiguation_qa 0 multiple_choice_grade 42.64 ± 3.08
bigbench_geometric_shapes 0 multiple_choice_grade 22.84 ± 2.22
exact_str_match 3.34 ± 0.95
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 36.60 ± 2.16
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 25.57 ± 1.65
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 56.00 ± 2.87
bigbench_movie_recommendation 0 multiple_choice_grade 42.40 ± 2.21
bigbench_navigate 0 multiple_choice_grade 54.70 ± 1.57
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 62.90 ± 1.08
bigbench_ruin_names 0 multiple_choice_grade 53.35 ± 2.36
bigbench_salient_translation_error_detection 0 multiple_choice_grade 24.35 ± 1.36
bigbench_snarks 0 multiple_choice_grade 62.43 ± 3.61
bigbench_sports_understanding 0 multiple_choice_grade 70.28 ± 1.46
bigbench_temporal_sequences 0 multiple_choice_grade 41.30 ± 1.56
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 22.32 ± 1.18
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 17.77 ± 0.91
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 56.00 ± 2.87

Average: 44.99%

Average score: 56.96%

Elapsed time: 01:51:53

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.32
AI2 Reasoning Challenge (25-Shot) 69.11
HellaSwag (10-Shot) 87.27
MMLU (5-Shot) 63.69
TruthfulQA (0-shot) 63.86
Winogrande (5-shot) 79.87
GSM8k (5-shot) 70.13
Downloads last month
849
Safetensors
Model size
12.9B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for macadeliccc/piccolo-math-2x7b

Quantizations
3 models

Collection including macadeliccc/piccolo-math-2x7b

Evaluation results