metadata
base_model: BAAI/bge-small-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:734
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: List of ex-dividend dates in my portfolio
sentences:
- >-
[{"get_portfolio(None)": "portfolio"},
{"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"},
{"sort('portfolio','gains','desc')": "portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"get_dividend_history('portfolio','next 6 month')": "portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','asset_class','global
bonds','portfolio')": "portfolio"}]
- source_sentence: How has the momentum factor impacted my investment gains [DATES]?
sentences:
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','sector','sector information
technology','portfolio')": "portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','returns',None,'returns')":
"portfolio"}, {"filter('portfolio','ticker','==','<TICKER1>')":
"portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','factor','momentum','returns')":
"portfolio"}]
- source_sentence: how do different asset types contribute to my portfolio's returns?
sentences:
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','asset_class',None,'returns')":
"portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','region',None,'returns')":
"portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','returns',None,'returns')":
"portfolio"}, {"filter('portfolio','ticker','==','<TICKER1>')":
"portfolio"}]
- source_sentence: compare my accounts to market performance
sentences:
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','sector','sector
gold','portfolio')": "portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"},
{"sort('portfolio','gains','desc')": "portfolio"},
{"get_attribute(['<TICKER1>'],['returns'],'<DATES>')":
"<TICKER1>_performance_data"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"},
{"sort('portfolio','gains','desc')": "portfolio"},
{"get_attribute(['SPY'],['returns'],'<DATES>')":
"market_performance_data"}]
- source_sentence: how have I done in US equity [DATES]?
sentences:
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','asset_class','us
equity','returns')": "portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','sector','sector
utilities','portfolio')": "portfolio"}]
- >-
[{"get_portfolio(None)": "portfolio"},
{"factor_contribution('portfolio','<DATES>','asset_class','us
equity','returns')": "portfolio"}]
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.6643835616438356
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.815068493150685
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8767123287671232
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9315068493150684
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6643835616438356
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27168949771689493
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17534246575342463
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09315068493150684
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.018455098934550992
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.02264079147640792
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.024353120243531208
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.025875190258751908
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.17516985160301582
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7525385953468143
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.020976397907656166
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.6643835616438356
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.815068493150685
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8767123287671232
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9315068493150684
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6643835616438356
name: Dot Precision@1
- type: dot_precision@3
value: 0.27168949771689493
name: Dot Precision@3
- type: dot_precision@5
value: 0.17534246575342463
name: Dot Precision@5
- type: dot_precision@10
value: 0.09315068493150684
name: Dot Precision@10
- type: dot_recall@1
value: 0.018455098934550992
name: Dot Recall@1
- type: dot_recall@3
value: 0.02264079147640792
name: Dot Recall@3
- type: dot_recall@5
value: 0.024353120243531208
name: Dot Recall@5
- type: dot_recall@10
value: 0.025875190258751908
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.17516985160301582
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7525385953468143
name: Dot Mrr@10
- type: dot_map@100
value: 0.020976397907656166
name: Dot Map@100
SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'how have I done in US equity [DATES]?',
'[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]',
'[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6644 |
cosine_accuracy@3 | 0.8151 |
cosine_accuracy@5 | 0.8767 |
cosine_accuracy@10 | 0.9315 |
cosine_precision@1 | 0.6644 |
cosine_precision@3 | 0.2717 |
cosine_precision@5 | 0.1753 |
cosine_precision@10 | 0.0932 |
cosine_recall@1 | 0.0185 |
cosine_recall@3 | 0.0226 |
cosine_recall@5 | 0.0244 |
cosine_recall@10 | 0.0259 |
cosine_ndcg@10 | 0.1752 |
cosine_mrr@10 | 0.7525 |
cosine_map@100 | 0.021 |
dot_accuracy@1 | 0.6644 |
dot_accuracy@3 | 0.8151 |
dot_accuracy@5 | 0.8767 |
dot_accuracy@10 | 0.9315 |
dot_precision@1 | 0.6644 |
dot_precision@3 | 0.2717 |
dot_precision@5 | 0.1753 |
dot_precision@10 | 0.0932 |
dot_recall@1 | 0.0185 |
dot_recall@3 | 0.0226 |
dot_recall@5 | 0.0244 |
dot_recall@10 | 0.0259 |
dot_ndcg@10 | 0.1752 |
dot_mrr@10 | 0.7525 |
dot_map@100 | 0.021 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 734 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 11.94 tokens
- max: 26 tokens
- min: 24 tokens
- mean: 84.1 tokens
- max: 194 tokens
- Samples:
sentence_0 sentence_1 what is my portfolio [DATES] cagr?
[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
what is my [DATES] rate of return
[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
show backtest of my performance [DATES]?
[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | cosine_map@100 |
---|---|---|
0.0270 | 2 | 0.0136 |
0.0541 | 4 | 0.0138 |
0.0811 | 6 | 0.0140 |
0.1081 | 8 | 0.0142 |
0.1351 | 10 | 0.0144 |
0.1622 | 12 | 0.0146 |
0.1892 | 14 | 0.0147 |
0.2162 | 16 | 0.0150 |
0.2432 | 18 | 0.0152 |
0.2703 | 20 | 0.0157 |
0.2973 | 22 | 0.0165 |
0.3243 | 24 | 0.0168 |
0.3514 | 26 | 0.0167 |
0.3784 | 28 | 0.0170 |
0.4054 | 30 | 0.0174 |
0.4324 | 32 | 0.0180 |
0.4595 | 34 | 0.0181 |
0.4865 | 36 | 0.0181 |
0.5135 | 38 | 0.0182 |
0.5405 | 40 | 0.0182 |
0.5676 | 42 | 0.0182 |
0.5946 | 44 | 0.0183 |
0.6216 | 46 | 0.0183 |
0.6486 | 48 | 0.0183 |
0.6757 | 50 | 0.0183 |
0.7027 | 52 | 0.0182 |
0.7297 | 54 | 0.0185 |
0.7568 | 56 | 0.0186 |
0.7838 | 58 | 0.0189 |
0.8108 | 60 | 0.0190 |
0.8378 | 62 | 0.0191 |
0.8649 | 64 | 0.0193 |
0.8919 | 66 | 0.0197 |
0.9189 | 68 | 0.0198 |
0.9459 | 70 | 0.0196 |
0.9730 | 72 | 0.0196 |
1.0 | 74 | 0.0198 |
1.0270 | 76 | 0.0198 |
1.0541 | 78 | 0.0198 |
1.0811 | 80 | 0.0199 |
1.1081 | 82 | 0.0199 |
1.1351 | 84 | 0.0199 |
1.1622 | 86 | 0.0199 |
1.1892 | 88 | 0.0199 |
1.2162 | 90 | 0.0199 |
1.2432 | 92 | 0.0199 |
1.2703 | 94 | 0.0200 |
1.2973 | 96 | 0.0199 |
1.3243 | 98 | 0.0197 |
1.3514 | 100 | 0.0198 |
1.3784 | 102 | 0.0198 |
1.4054 | 104 | 0.0198 |
1.4324 | 106 | 0.0200 |
1.4595 | 108 | 0.0201 |
1.4865 | 110 | 0.0202 |
1.5135 | 112 | 0.0202 |
1.5405 | 114 | 0.0203 |
1.5676 | 116 | 0.0203 |
1.5946 | 118 | 0.0201 |
1.6216 | 120 | 0.0201 |
1.6486 | 122 | 0.0202 |
1.6757 | 124 | 0.0201 |
1.7027 | 126 | 0.0201 |
1.7297 | 128 | 0.0201 |
1.7568 | 130 | 0.0200 |
1.7838 | 132 | 0.0200 |
1.8108 | 134 | 0.0202 |
1.8378 | 136 | 0.0201 |
1.8649 | 138 | 0.0202 |
1.8919 | 140 | 0.0202 |
1.9189 | 142 | 0.0202 |
1.9459 | 144 | 0.0201 |
1.9730 | 146 | 0.0202 |
2.0 | 148 | 0.0202 |
2.0270 | 150 | 0.0204 |
2.0541 | 152 | 0.0204 |
2.0811 | 154 | 0.0203 |
2.1081 | 156 | 0.0203 |
2.1351 | 158 | 0.0204 |
2.1622 | 160 | 0.0204 |
2.1892 | 162 | 0.0202 |
2.2162 | 164 | 0.0202 |
2.2432 | 166 | 0.0201 |
2.2703 | 168 | 0.0202 |
2.2973 | 170 | 0.0202 |
2.3243 | 172 | 0.0202 |
2.3514 | 174 | 0.0202 |
2.3784 | 176 | 0.0202 |
2.4054 | 178 | 0.0202 |
2.4324 | 180 | 0.0203 |
2.4595 | 182 | 0.0203 |
2.4865 | 184 | 0.0203 |
2.5135 | 186 | 0.0204 |
2.5405 | 188 | 0.0204 |
2.5676 | 190 | 0.0203 |
2.5946 | 192 | 0.0203 |
2.6216 | 194 | 0.0203 |
2.6486 | 196 | 0.0202 |
2.6757 | 198 | 0.0202 |
2.7027 | 200 | 0.0202 |
2.7297 | 202 | 0.0202 |
2.7568 | 204 | 0.0201 |
2.7838 | 206 | 0.0201 |
2.8108 | 208 | 0.0201 |
2.8378 | 210 | 0.0201 |
2.8649 | 212 | 0.0202 |
2.8919 | 214 | 0.0202 |
2.9189 | 216 | 0.0203 |
2.9459 | 218 | 0.0203 |
2.9730 | 220 | 0.0204 |
3.0 | 222 | 0.0204 |
3.0270 | 224 | 0.0204 |
3.0541 | 226 | 0.0206 |
3.0811 | 228 | 0.0205 |
3.1081 | 230 | 0.0205 |
3.1351 | 232 | 0.0205 |
3.1622 | 234 | 0.0206 |
3.1892 | 236 | 0.0206 |
3.2162 | 238 | 0.0206 |
3.2432 | 240 | 0.0206 |
3.2703 | 242 | 0.0206 |
3.2973 | 244 | 0.0205 |
3.3243 | 246 | 0.0205 |
3.3514 | 248 | 0.0204 |
3.3784 | 250 | 0.0204 |
3.4054 | 252 | 0.0204 |
3.4324 | 254 | 0.0205 |
3.4595 | 256 | 0.0205 |
3.4865 | 258 | 0.0205 |
3.5135 | 260 | 0.0205 |
3.5405 | 262 | 0.0204 |
3.5676 | 264 | 0.0204 |
3.5946 | 266 | 0.0204 |
3.6216 | 268 | 0.0203 |
3.6486 | 270 | 0.0203 |
3.6757 | 272 | 0.0204 |
3.7027 | 274 | 0.0204 |
3.7297 | 276 | 0.0206 |
3.7568 | 278 | 0.0206 |
3.7838 | 280 | 0.0206 |
3.8108 | 282 | 0.0206 |
3.8378 | 284 | 0.0206 |
3.8649 | 286 | 0.0205 |
3.8919 | 288 | 0.0206 |
3.9189 | 290 | 0.0207 |
3.9459 | 292 | 0.0206 |
3.9730 | 294 | 0.0206 |
4.0 | 296 | 0.0207 |
4.0270 | 298 | 0.0207 |
4.0541 | 300 | 0.0207 |
4.0811 | 302 | 0.0208 |
4.1081 | 304 | 0.0208 |
4.1351 | 306 | 0.0207 |
4.1622 | 308 | 0.0207 |
4.1892 | 310 | 0.0207 |
4.2162 | 312 | 0.0208 |
4.2432 | 314 | 0.0208 |
4.2703 | 316 | 0.0208 |
4.2973 | 318 | 0.0208 |
4.3243 | 320 | 0.0208 |
4.3514 | 322 | 0.0208 |
4.3784 | 324 | 0.0208 |
4.4054 | 326 | 0.0208 |
4.4324 | 328 | 0.0207 |
4.4595 | 330 | 0.0207 |
4.4865 | 332 | 0.0207 |
4.5135 | 334 | 0.0207 |
4.5405 | 336 | 0.0207 |
4.5676 | 338 | 0.0207 |
4.5946 | 340 | 0.0207 |
4.6216 | 342 | 0.0208 |
4.6486 | 344 | 0.0208 |
4.6757 | 346 | 0.0208 |
4.7027 | 348 | 0.0208 |
4.7297 | 350 | 0.0208 |
4.7568 | 352 | 0.0209 |
4.7838 | 354 | 0.0209 |
4.8108 | 356 | 0.0210 |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}