|
--- |
|
language: |
|
- fa |
|
license: apache-2.0 |
|
base_model: makhataei/Whisper-Small-Common-Voice |
|
tags: |
|
- fa-asr |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Persian |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Persian |
|
|
|
This model is a fine-tuned version of [makhataei/Whisper-Small-Common-Voice](https://huggingface.co/makhataei/Whisper-Small-Common-Voice) on the Ctejarat dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5349 |
|
- Wer: 26.2116 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 80 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 4000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 0.2944 | 9.64 | 100 | 0.4843 | 33.6519 | |
|
| 0.1048 | 19.28 | 200 | 0.4394 | 30.1706 | |
|
| 0.0273 | 28.92 | 300 | 0.4493 | 29.7611 | |
|
| 0.0083 | 38.55 | 400 | 0.4645 | 29.4198 | |
|
| 0.0042 | 48.19 | 500 | 0.4744 | 28.5324 | |
|
| 0.0026 | 57.83 | 600 | 0.4811 | 28.3276 | |
|
| 0.0018 | 67.47 | 700 | 0.4863 | 27.6451 | |
|
| 0.0014 | 77.11 | 800 | 0.4907 | 27.7816 | |
|
| 0.0012 | 86.75 | 900 | 0.4945 | 27.4403 | |
|
| 0.0009 | 96.39 | 1000 | 0.4979 | 27.4403 | |
|
| 0.0008 | 106.02 | 1100 | 0.5010 | 26.8259 | |
|
| 0.0007 | 115.66 | 1200 | 0.5036 | 26.8259 | |
|
| 0.0006 | 125.3 | 1300 | 0.5062 | 26.6894 | |
|
| 0.0006 | 134.94 | 1400 | 0.5085 | 26.3481 | |
|
| 0.0005 | 144.58 | 1500 | 0.5107 | 26.3481 | |
|
| 0.0004 | 154.22 | 1600 | 0.5126 | 26.4164 | |
|
| 0.0004 | 163.86 | 1700 | 0.5145 | 26.4846 | |
|
| 0.0004 | 173.49 | 1800 | 0.5163 | 26.3481 | |
|
| 0.0003 | 183.13 | 1900 | 0.5179 | 30.8532 | |
|
| 0.0003 | 192.77 | 2000 | 0.5194 | 30.8532 | |
|
| 0.0003 | 202.41 | 2100 | 0.5209 | 30.7850 | |
|
| 0.0003 | 212.05 | 2200 | 0.5222 | 30.9215 | |
|
| 0.0003 | 221.69 | 2300 | 0.5236 | 30.9215 | |
|
| 0.0003 | 231.33 | 2400 | 0.5248 | 30.9215 | |
|
| 0.0002 | 240.96 | 2500 | 0.5259 | 30.9215 | |
|
| 0.0002 | 250.6 | 2600 | 0.5270 | 30.7167 | |
|
| 0.0002 | 260.24 | 2700 | 0.5280 | 30.8532 | |
|
| 0.0002 | 269.88 | 2800 | 0.5290 | 30.8532 | |
|
| 0.0002 | 279.52 | 2900 | 0.5299 | 30.7167 | |
|
| 0.0002 | 289.16 | 3000 | 0.5306 | 30.7167 | |
|
| 0.0002 | 298.8 | 3100 | 0.5314 | 30.7167 | |
|
| 0.0002 | 308.43 | 3200 | 0.5321 | 30.7167 | |
|
| 0.0002 | 318.07 | 3300 | 0.5327 | 30.7850 | |
|
| 0.0002 | 327.71 | 3400 | 0.5333 | 30.7167 | |
|
| 0.0002 | 337.35 | 3500 | 0.5337 | 30.7167 | |
|
| 0.0002 | 346.99 | 3600 | 0.5341 | 30.7167 | |
|
| 0.0002 | 356.63 | 3700 | 0.5344 | 30.6485 | |
|
| 0.0002 | 366.27 | 3800 | 0.5347 | 26.2116 | |
|
| 0.0002 | 375.9 | 3900 | 0.5348 | 26.2116 | |
|
| 0.0002 | 385.54 | 4000 | 0.5349 | 26.2116 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|