Model trained on Hindi and English data.
This model also includes dataset https://huggingface.co/datasets/sarvamai/samvaad-hi-v1
Check latest evals at https://github.com/manishiitg/IndicEval
Try it out: https://colab.research.google.com/drive/1A_hbsq1vrCeAh3dEMvtwxxNxcNZ1BUyW?usp=sharing
For sample responose on different prompts checkout: https://github.com/manishiitg/hi-llm-eval
Language Hi
Model | xlsum-hi | truthfulqa-hi | indic-arc-easy | mmlu_hi | indicqa | flores | indicheadline | indicxparaphrase | hellaswag-indic | indicwikibio | boolq-hi | implicit_hate | indic-arc-challenge | indicsentiment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
open-aditi-hi-v2 | 0.4213 | 0.6934 | 0.4979 | 0.3253 | 0.0795 | 43.6822 | 0.4565 | 0.6838 | 0.2404 | 0.4846 | 0.8541 | 11.5021 | 0.4462 | 0.9729 |
open-aditi-hi-v3 | 0.4490 | 0.5369 | 0.5480 | 0.1351 | 0.0058 | 48.2859 | 0.4682 | 0.8846 | 0.4891 | 0.5034 | 0.5401 | 8.8315 | 0.4633 | 0.9519 |
open-aditi-hi-v4 | 0.4046 | 0.7671 | 0.4529 | 0.2124 | 0.0026 | 47.8500 | 0.1980 | 0.7737 | 0.3595 | 0.4894 | 0.7015 | 5.9709 | 0.3857 | 0.9699 |
OpenHermes-2.5-Mistral-7B | 0.1774 | 0.3234 | 0.3523 | 0.2769 | 0.2721 | 30.3465 | 0.1996 | 0.8766 | 0.2485 | 0.3332 | 0.5979 | 0.2068 | 0.3396 | 0.9048 |
OpenHermes-2.5-Mistral-7B-AWQ | 0.1894 | 0.3428 | 0.3291 | 0.2750 | 0.3116 | 29.3681 | 0.2062 | 0.8536 | 0.2479 | 0.3067 | 0.5272 | 6.0594 | 0.3157 | 0.9218 |
open-aditi-hi-v1 | 0.4212 | 0.4230 | 0.3889 | 0.1398 | 0.1306 | 40.2376 | 0.4248 | 0.5939 | 0.0848 | 0.4104 | 0.3758 | 8.6105 | 0.3558 | 0.8798 |
Airavata | 0.4650 | 0.0466 | 0.1128 | 0.1336 | 0.0155 | 58.5260 | 0.4346 | 0.6419 | 0.0550 | 0.0637 | 0.0128 | 6.3612 | 0.0836 | 0.0992 |
Language En
Model | boolq | truthfulqa | arc-easy-exact | mmlu | hellaswag | xlsum | arc-challenge |
---|---|---|---|---|---|---|---|
open-aditi-hi-v4 | 0.3905 | 0.3378 | 0.8460 | 0.5725 | 0.7603 | 0.4384 | 0.7491 |
OpenHermes-2.5-Mistral-7B | 0.4061 | 0.2081 | 0.8687 | 0.5991 | 0.7999 | 0.4328 | 0.7790 |
OpenHermes-2.5-Mistral-7B-AWQ | 0.4199 | 0.1897 | 0.8569 | 0.5816 | 0.7826 | 0.4317 | 0.7611 |
open-aditi-hi-v3 | 0.3749 | 0.3097 | 0.8384 | 0.5478 | 0.7645 | 0.4352 | 0.7415 |
open-aditi-hi-v2 | 0.3982 | 0.2999 | 0.8388 | 0.5544 | 0.4738 | 0.4349 | 0.7235 |
open-aditi-hi-v1 | 0.0434 | 0.3317 | 0.7588 | 0.2597 | 0.3509 | 0.4288 | 0.6271 |
Airavata | 0.5086 | 0.3574 | 0.6772 | 0.1165 | 0.1799 | 0.4393 | 0.1630 |
Task: flores Metric: chrf
Task: implicit_hate Metric: chrf
Task: indicsentiment Metric: accuracy
Task: indicxparaphrase Metric: accuracy
Task: boolq-hi Metric: accuracy
Task: truthfulqa-hi Metric: accuracy
Task: indic-arc-easy Metric: accuracy
Task: indicwikibio Metric: bleurt
Task: hellaswag-indic Metric: accuracy
Task: indicheadline Metric: bleurt
Task: xlsum-hi Metric: bleurt
Task: indic-arc-challenge Metric: accuracy
Task: mmlu_hi Metric: average_acc
Task: indicqa Metric: accuracy
Task: arc-easy-exact Metric: accuracy
Task: hellaswag Metric: accuracy
Task: arc-challenge Metric: accuracy
Task: mmlu Metric: average_acc
Task: boolq Metric: accuracy
Task: xlsum Metric: bleurt
Task: truthfulqa Metric: accuracy
Model evaluation on OpenLLM LeaderBoard
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 64.23 |
AI2 Reasoning Challenge (25-Shot) | 60.15 |
HellaSwag (10-Shot) | 81.84 |
MMLU (5-Shot) | 61.32 |
TruthfulQA (0-shot) | 44.89 |
Winogrande (5-shot) | 79.95 |
GSM8k (5-shot) | 57.24 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 64.23 |
AI2 Reasoning Challenge (25-Shot) | 60.15 |
HellaSwag (10-Shot) | 81.84 |
MMLU (5-Shot) | 61.32 |
TruthfulQA (0-shot) | 44.89 |
Winogrande (5-shot) | 79.95 |
GSM8k (5-shot) | 57.24 |
- Downloads last month
- 44
Model tree for manishiitg/open-aditi-hi-v4
Collection including manishiitg/open-aditi-hi-v4
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard60.150
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard81.840
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard61.320
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard44.890
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.950
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard57.240