metadata
license: apache-2.0
datasets:
- kinokokoro/ichikara-instruction-003
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
library_name: transformers
tags:
- text-generation-inference
- transformers
Sample Use
MODEL_DIR = os.path.join("model_dir")
def load_model():
print("モデルとトークナイザーを読み込み中...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
model = AutoModelForCausalLM.from_pretrained(
MODEL_DIR,
torch_dtype=torch.float16,
device_map={"": 0}, # 明示的にGPU割り当て
use_cache=True, # キャッシュを有効化
).to('cuda') # 明示的にGPUへ
model.eval() # 評価モード
return model, tokenizer
def generate_predictions(model, tokenizer, input_file, output_file):
# バッチ処理の追加
BATCH_SIZE = 8 # バッチサイズの設定
print(f"入力ファイルを読み込み中: {input_file}")
tasks = []
with open(input_file, 'r', encoding='utf-8') as f:
for line in f:
tasks.append(json.loads(line))
results = []
print("推論を実行中...")
# バッチ処理
for i in tqdm(range(0, len(tasks), BATCH_SIZE)):
batch_tasks = tasks[i:i + BATCH_SIZE]
prompts = [f"入力: {task['input']}\n出力: " for task in batch_tasks]
# バッチでの推論
inputs = tokenizer(
prompts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to('cuda')
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=512,
temperature=0.7,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=1,
early_stopping=True, # 早期停止を有効化
use_cache=True # キャッシュを使用
)
# バッチ出力の処理
for j, output in enumerate(outputs):
generated_text = tokenizer.decode(output, skip_special_tokens=True)
output_text = generated_text.split("出力: ")[-1].strip()
results.append({
"task_id": batch_tasks[j]["task_id"],
"output": output_text
})
print(f"結果を保存中: {output_file}")
with open(output_file, 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')