NuExtract-v1.5 by NuMind ๐ฅ
NuExtract-v1.5 is a fine-tuning of Phi-3.5-mini-instruct, trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian). To use the model, provide an input text and a JSON template describing the information you need to extract.
Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.
Check out the blog post.
Try it here: Playground
We also provide a tiny (0.5B) version which is based on Qwen2.5-0.5B: NuExtract-tiny-v1.5
Benchmark
Zero-shot performance (English):
Zero-shot performance (Multilingual):
Long documents (8-10k tokens):
Very long documents (10-20k tokens):
Few-shot fine-tuning:
Usage
To use the model:
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
template = json.dumps(json.loads(template), indent=4)
prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
outputs = []
with torch.no_grad():
for i in range(0, len(prompts), batch_size):
batch_prompts = prompts[i:i+batch_size]
batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)
pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
return [output.split("<|output|>")[1] for output in outputs]
model_name = "numind/NuExtract-v1.5"
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
text = """We introduce Mistral 7B, a 7โbillion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B โ Instruct, that surpasses Llama 2 13B โ chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: <https://github.com/mistralai/mistral-src>
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""
template = """{
"Model": {
"Name": "",
"Number of parameters": "",
"Number of max token": "",
"Architecture": []
},
"Usage": {
"Use case": [],
"Licence": ""
}
}"""
prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
print(prediction)
Sliding window prompting:
import json
MAX_INPUT_SIZE = 20_000
MAX_NEW_TOKENS = 6000
def clean_json_text(text):
text = text.strip()
text = text.replace("\#", "#").replace("\&", "&")
return text
def predict_chunk(text, template, current, model, tokenizer):
current = clean_json_text(current)
input_llm = f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{"
input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda")
output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True)
return clean_json_text(output.split("<|output|>")[1])
def split_document(document, window_size, overlap):
tokens = tokenizer.tokenize(document)
print(f"\tLength of document: {len(tokens)} tokens")
chunks = []
if len(tokens) > window_size:
for i in range(0, len(tokens), window_size-overlap):
print(f"\t{i} to {i + len(tokens[i:i + window_size])}")
chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size])
chunks.append(chunk)
if i + len(tokens[i:i + window_size]) >= len(tokens):
break
else:
chunks.append(document)
print(f"\tSplit into {len(chunks)} chunks")
return chunks
def handle_broken_output(pred, prev):
try:
if all([(v in ["", []]) for v in json.loads(pred).values()]):
# if empty json, return previous
pred = prev
except:
# if broken json, return previous
pred = prev
return pred
def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128):
# split text into chunks of n tokens
tokens = tokenizer.tokenize(text)
chunks = split_document(text, window_size, overlap)
# iterate over text chunks
prev = template
for i, chunk in enumerate(chunks):
print(f"Processing chunk {i}...")
pred = predict_chunk(chunk, template, prev, model, tokenizer)
# handle broken output
pred = handle_broken_output(pred, prev)
# iterate
prev = pred
return pred
- Downloads last month
- 249
Model tree for mateuo/visado2
Base model
microsoft/Phi-3.5-mini-instruct