mav23's picture
Upload folder using huggingface_hub
e0f212a verified
metadata
license: apache-2.0
library_name: transformers
base_model:
  - openchat/openchat-3.5-0106
datasets:
  - Yukang/LongAlpaca-12k
model-index:
  - name: OpenChat-3.5-0106_32K-PoSE
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 39.69
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 8.83
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 1.44
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.47
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.33
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 11.46
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
          name: Open LLM Leaderboard

Buy me a Ko-FiSupport my work using Patreon

OpenChat-3.5-0106_32K-PoSE

Description

This model is Openchat-3.5-0106 with the context length extended from 8192 tokens to 32768 tokens using PoSE.

The model was fine-tuned using Rank-Stabilized LoRA and the LongAlpaca-12K dataset. I hope to continue extending the context in future versions and then apply the same methods to my upscaled versions of OpenChat-3.5 that were created using Block Expansion instead of Depth UP Scaling.

After fine-tuning, the model was tested using passkey retrieval and achieved a score of 100%. Below you can also find the results of the Open LLM Leaderboard evaluations and I am a bit disappointed with those. The model ended up with a significant reduction in performance compared to the original model in all but one test (MUSR). I expected it to do better than the original model on MUSR since that test benefits from long context understanding but I didn't expect such a negative impact on the other tasks. Anyway, I will be addressing this on a future version. I used the LongAlpaca-12K dataset because it is small and I have limited computational resources but I might have to try a larger dataset for the next attempt. If you would like to help me, there are links on the top of the model card for my Patreon and Ko-Fi.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 12.70
IFEval (0-Shot) 39.69
BBH (3-Shot) 8.83
MATH Lvl 5 (4-Shot) 1.44
GPQA (0-shot) 3.47
MuSR (0-shot) 11.33
MMLU-PRO (5-shot) 11.46

Citation

@misc{zhu2024poseefficientcontextwindow,
      title={PoSE: Efficient Context Window Extension of LLMs via Positional Skip-wise Training}, 
      author={Dawei Zhu and Nan Yang and Liang Wang and Yifan Song and Wenhao Wu and Furu Wei and Sujian Li},
      year={2024},
      eprint={2309.10400},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2309.10400}, 
}