mav23's picture
Upload folder using huggingface_hub
e0f212a verified
---
license: apache-2.0
library_name: transformers
base_model:
- openchat/openchat-3.5-0106
datasets:
- Yukang/LongAlpaca-12k
model-index:
- name: OpenChat-3.5-0106_32K-PoSE
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 39.69
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 8.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.44
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.47
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.33
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 11.46
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_32K-PoSE
name: Open LLM Leaderboard
---
<p align="center">
<a href="https://ko-fi.com/pretergeek">Buy me a Ko-Fi</a>
<a href="https://patreon.com/Pretergeek">Support my work using Patreon</a>
</p>
# OpenChat-3.5-0106_32K-PoSE
## Description
This model is [Openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) with the context length extended from 8192 tokens to 32768 tokens using [PoSE](https://huggingface.co/papers/2309.10400).
The model was fine-tuned using [Rank-Stabilized LoRA](https://huggingface.co/blog/damjan-k/rslora) and the [LongAlpaca-12K](Yukang/LongAlpaca-12k) dataset. I hope to continue extending the context in future versions and then apply the same methods to my [upscaled versions of OpenChat-3.5](https://huggingface.co/collections/Pretergeek/openchat-35-0106-with-additional-layers-66a8d3262c7c3ebdd7783a29) that were created using Block Expansion instead of Depth UP Scaling.
After fine-tuning, the model was tested using passkey retrieval and achieved a score of 100%. Below you can also find the results of the Open LLM Leaderboard evaluations and I am a bit disappointed with those. The model ended up with a significant reduction in performance compared to the original model in all but one test (MUSR). I expected it to do better than the original model on MUSR since that test benefits from long context understanding but I didn't expect such a negative impact on the other tasks. Anyway, I will be addressing this on a future version. I used the LongAlpaca-12K dataset because it is small and I have limited computational resources but I might have to try a larger dataset for the next attempt. If you would like to help me, there are links on the top of the model card for my Patreon and Ko-Fi.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Pretergeek__OpenChat-3.5-0106_32K-PoSE)
| Metric |Value|
|-------------------|----:|
|Avg. |12.70|
|IFEval (0-Shot) |39.69|
|BBH (3-Shot) | 8.83|
|MATH Lvl 5 (4-Shot)| 1.44|
|GPQA (0-shot) | 3.47|
|MuSR (0-shot) |11.33|
|MMLU-PRO (5-shot) |11.46|
# Citation
```
@misc{zhu2024poseefficientcontextwindow,
title={PoSE: Efficient Context Window Extension of LLMs via Positional Skip-wise Training},
author={Dawei Zhu and Nan Yang and Liang Wang and Yifan Song and Wenhao Wu and Furu Wei and Sujian Li},
year={2024},
eprint={2309.10400},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2309.10400},
}
```