Wiederchat-7b-dpo

Wiederchat-7b-dpo is a dpo-aligned merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: mlabonne/OmniTruthyBeagle-7B-v0
    parameters:
      density: 0.60
      weight: 0.30
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    parameters:
      density: 0.65
      weight: 0.40
  - model: cognitivecomputations/openchat-3.5-0106-laser
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0

πŸ“ˆ Mt-Bench-De

{
    "first_turn": 7.8375,
    "second_turn": 7.4,
    "categories": {
        "writing": 8.975,
        "roleplay": 8.775,
        "reasoning": 6.4,
        "math": 4.1,
        "coding": 6.05,
        "extraction": 8.15,
        "stem": 9.175,
        "humanities": 9.325
    },
    "average": 7.61875
}

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johannhartmann/Wiederchat-7b-dpo"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
9
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mayflowergmbh/Wiederchat-7b-dpo

Collection including mayflowergmbh/Wiederchat-7b-dpo