_____    ______   __    __   ______   _____    ______   __  __   __    __    
/\  __-. /\  __ \ /\ "-./  \ /\  ___\ /\  __-. /\  ___\ /\ \/\ \ /\ "-./  \   
\ \ \/\ \\ \  __ \\ \ \-./\ \\ \  __\ \ \ \/\ \\ \___  \\ \ \_\ \\ \ \-./\ \  
 \ \____- \ \_\ \_\\ \_\ \ \_\\ \_____\\ \____- \/\_____\\ \_____\\ \_\ \ \_\ 
  \/____/  \/_/\/_/ \/_/  \/_/ \/_____/ \/____/  \/_____/ \/_____/ \/_/  \/_/ 
                                                                                                                                                                        

Model description

This repository contains a model for Danish abstractive summarisation of medicaltext.

This model is a fine-tuned version of DanSumT5-base trained on a danish medical text dataset.

The model was trained on LUMI using 1 AMD MI250X GPU.

Authors

Nicolaj Larsen
Mikkel Kildeberg
Emil Schledermann

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.12.1+git7548e2f
  • Datasets 2.13.2
  • Tokenizers 0.13.3
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.