REBEL-ru
Based on russian part of wikipedia (scrapped with CROCODILE). Model trained for 3 epochs on russian ruT5-base
How to use
Same code as REBEL-large (https://huggingface.co/Babelscape/rebel-large)
text = '''За последние 9 месяцев инвесторы в азиатские долларовые долговые обязательства потеряли 155 миллиардов долларов, пострадав от слабости Китая в дополнение к глобальной распродаже фиксированного дохода, наблюдаемой во всем мире по мере роста процентных ставок. '''
model_path = r"memyprokotow/rut5-REBEL-base"
triplet_extractor = pipeline('text2text-generation', model=model_path,
tokenizer=model_path,
#device=0
)
# We need to use the tokenizer manually since we need special tokens.
extracted_text = triplet_extractor.tokenizer.batch_decode([triplet_extractor(text, return_tensors=True, return_text=False, max_length=500)[0]["generated_token_ids"]])
print(extracted_text[0])
# Function to parse the generated text and extract the triplets
def extract_triplets(text):
triplets = []
relation, subject, relation, object_ = '', '', '', ''
text = text.strip()
current = 'x'
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").split():
if token == "<triplet>":
current = 't'
if relation != '':
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
relation = ''
subject = ''
elif token == "<subj>":
current = 's'
if relation != '':
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
object_ = ''
elif token == "<obj>":
current = 'o'
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
if subject != '' and relation != '' and object_ != '':
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
return triplets
extracted_triplets = extract_triplets(extracted_text[0])
print(extracted_triplets)
- Downloads last month
- 51
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.