File size: 1,830 Bytes
5237bb2
 
b36a521
5237bb2
b36a521
5237bb2
b36a521
5237bb2
b36a521
 
5237bb2
b36a521
5237bb2
 
 
b36a521
5237bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b36a521
5237bb2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# app.py
import os
import joblib
import torch
from transformers import BertTokenizer, BertForSequenceClassification
from torch.nn.functional import softmax

# Load the tokenizer and model
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# Check if CUDA is available, otherwise use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the saved model
model = joblib.load('model.joblib')
model.to(device)
model.eval()

# Class names
class_names = ["JAILBREAK", "INJECTION", "PHISHING", "SAFE"]

def preprocess(text):
    # Tokenize the input text
    encoding = tokenizer(
        text,
        truncation=True,
        padding=True,
        max_length=128,
        return_tensors='pt'
    )
    return encoding

def inference(model_inputs):
    """
    This function will be called for every inference request.
    """
    try:
        # Get the text input
        text = model_inputs.get('text', None)
        if text is None:
            return {'message': 'No text provided for inference.'}

        # Preprocess the text
        encoding = preprocess(text)
        input_ids = encoding['input_ids'].to(device)
        attention_mask = encoding['attention_mask'].to(device)

        # Perform inference
        with torch.no_grad():
            outputs = model(input_ids, attention_mask=attention_mask)
            logits = outputs.logits
            probabilities = softmax(logits, dim=-1)
            confidence, predicted_class = torch.max(probabilities, dim=-1)

        # Prepare the response
        predicted_label = class_names[predicted_class.item()]
        confidence_score = confidence.item()

        return {
            'classification': predicted_label,
            'confidence': confidence_score
        }

    except Exception as e:
        return {'error': str(e)}