mikudev's picture
Create README.md
7137b10 verified
|
raw
history blame
1.26 kB
metadata
tags:
  - gptq
language:
  - en
base_model: Sao10K/L3-8B-Stheno-v3.2

Original Model: https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2

Quantized with AutoGPTQ 128g wikitext2, using the script from https://aphrodite.pygmalion.chat/pages/quantization/quantization-methods.html#gptq

Script:

from datasets import load_dataset
from transformers import AutoTokenizer

from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig

pretrained_model_dir = "Sao10K/L3-8B-Stheno-v3.2"
quantized_model_dir = "L3-8B-Stheno-v3.2-FP8"

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
tokenizer.pad_token = tokenizer.eos_token

ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")

quantize_config = BaseQuantizeConfig(
    quant_method="fp8",
    activation_scheme="static",
    ignore_patterns=["re:.*lm_head"],
)

model = AutoFP8ForCausalLM.from_pretrained(
    pretrained_model_dir, quantize_config=quantize_config
)

model.quantize(examples)
model.save_quantized(quantized_model_dir)