|
--- |
|
tags: |
|
- gptq |
|
language: |
|
- en |
|
base_model: Sao10K/L3-8B-Stheno-v3.2 |
|
--- |
|
|
|
Original Model: https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2 |
|
|
|
Quantized with AutoGPTQ 128g wikitext2, using the script from https://aphrodite.pygmalion.chat/pages/quantization/quantization-methods.html#gptq |
|
|
|
Script: |
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig |
|
|
|
pretrained_model_dir = "Sao10K/L3-8B-Stheno-v3.2" |
|
quantized_model_dir = "L3-8B-Stheno-v3.2-FP8" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512)) |
|
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds] |
|
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda") |
|
|
|
quantize_config = BaseQuantizeConfig( |
|
quant_method="fp8", |
|
activation_scheme="static", |
|
ignore_patterns=["re:.*lm_head"], |
|
) |
|
|
|
model = AutoFP8ForCausalLM.from_pretrained( |
|
pretrained_model_dir, quantize_config=quantize_config |
|
) |
|
|
|
model.quantize(examples) |
|
model.save_quantized(quantized_model_dir) |
|
``` |