|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: WD NEW MY PASSPORT 외장SSD 1TB 외장하드 스마트폰 아이패드 XBOX 세븐컴 |
|
- text: '2.5인치 HDD SSD 보관 케이스 USB3.0 SATA 어답터 확장 외장하드 케이스 선택1: 2.5인치 HDD SSD 하드 보관함 |
|
퀄리티어슈어런스코리아' |
|
- text: 이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함 레알몰 |
|
- text: NEXT-644DU3 4베이 HDD SSD USB3.0 도킹스테이션 프리줌 |
|
- text: Seagate IronWolf NAS ST1000VN002 1TB AS3년/공식판매점 (주)픽셀아트 (PIXELART) |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.7785757031717534 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 12 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 3 | <ul><li>'키오시아 EXCERIA PLUS G3 M.2 NVMe 엄지척스토어'</li><li>'[키오시아] EXCERIA G2 M.2 NVMe (500GB) 주식회사 에티버스이비티'</li><li>'ADATA Ultimate SU650 120GB 밀알시스템'</li></ul> | |
|
| 1 | <ul><li>'시놀로지 Expansion Unit DX517 (5베이/하드미포함) 타워형 확장 유닛 DS1817+, DS1517+ (주)비엔지센터'</li><li>'[아이피타임 쇼핑몰] NAS1 dual 1베이 나스 (하드미포함) (주)에이치앤인터내셔널'</li><li>'시놀로지 정품 나스 DS223 2베이 NAS 스토리지 클라우드 서버 구축 시놀로지 NAS DS223 유심홀릭'</li></ul> | |
|
| 0 | <ul><li>'씨게이트 바라쿠다 1TB ST1000DM010 SATA3 64M 1테라 하드 오늘 출발 주식회사 호스트시스템'</li><li>'WD BLUE (WD20EZBX) 3.5 SATA HDD (2TB/7200rpm/256MB/SMR) 아이코다(주)'</li><li>'씨게이트 IronWolf 8TB ST8000VN004 (SATA3/7200/256M) (주)조이젠'</li></ul> | |
|
| 4 | <ul><li>'Sandisk Extreme Pro CZ880 (128GB) (주)아이티엔조이'</li><li>'Sandisk Cruzer Glide CZ600 (16GB) 컴튜브 주식회사'</li><li>'샌디스크 울트라 핏 USB 3.1 32GB Ultra Fit CZ430 초소형 주식회사 에스티원테크'</li></ul> | |
|
| 6 | <ul><li>'NEXT-DC3011TS 1:11 HDD SSD 스마트 하드복사 삭제기 리벤플러스'</li><li>'넥시 NX-802RU31 2베이 RAID 데이터 스토리지 하드 도킹스테이션 (NX768) 대성NETWORK'</li><li>'넥시 USB3.1 C타입 2베이 DAS 데이터 스토리지 NX768 (주)팁스커뮤니케이션즈'</li></ul> | |
|
| 11 | <ul><li>'이지넷유비쿼터스 NEXT-215U3 (하드미포함) (주)컴파크씨앤씨'</li><li>'ORICO PHP-35 보라 3.5인치 하드 보호케이스 (주)조이젠'</li><li>'[ORICO] PHP-35 3.5형 하드디스크 보관함 [블루] (주)컴퓨존'</li></ul> | |
|
| 2 | <ul><li>'(주)근호컴 [라인업시스템]LS-EXODDC 외장ODD (주)근호컴'</li><li>'[라인업시스템] LANSTAR LS-BRODD 블루레이 외장ODD 주식회사 에티버스이비티'</li><li>'넥스트유 NEXT-200DVD-RW USB3.0 DVD-RW 드라이브 ) (주)인컴씨엔에스'</li></ul> | |
|
| 5 | <ul><li>'(주)근호컴 [멜로디]1P 투명 연질 CD/DVD 케이스 (10장) (주)근호컴'</li><li>'HP CD-R 10P / 52X 700MB / 원통케이스 포장 제품 티앤제이 (T&J) 통상'</li><li>'엑토 CD롬컨테이너_50매입 CDC-50K /CD보관함/CD케이스/씨디보관함/씨디케이스/cd정리함 CDC-50K 아이보리 솔로몬샵'</li></ul> | |
|
| 9 | <ul><li>'시놀로지 비드라이브 BDS70-1T BeeDrive 1TB 외장SSD 개인 백업허브 정품 솔루션 웍스(Solution Works)'</li><li>'CORSAIR EX100U Portable SSD Type C (1TB) (주)아이티엔조이'</li><li>'ASUS ROG STRIX ARION ESD-S1C M 2 NVMe SSD 외장케이스 (주)아이웍스'</li></ul> | |
|
| 8 | <ul><li>'넥스트유 NEXT-651DCU3 도킹스테이션 2베이 (주)수빈인포텍'</li><li>'이지넷유비쿼터스 넥스트유 659CCU3 도킹 스테이션 주식회사 매커드'</li><li>'이지넷유비쿼터스 NEXT-644DU3 4베이 도킹스테이션 에이치엠에스'</li></ul> | |
|
| 10 | <ul><li>'USB3.0 4베이 DAS 스토리지 NX770 (주)담다몰'</li><li>'[NEXI] NX-804RU30 외장 케이스 HDD SSD USB 3.0 4베이 하드 도킹스테이션 NX770 주식회사 유진정보통신'</li><li>'[NEXI] 넥시 NX-804RU30 RAID (4베이) [USB3.0] [NX770] [DAS] [하드미포함] (주)컴퓨존'</li></ul> | |
|
| 7 | <ul><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 Q6GCLONE 퀄리티어슈런스'</li><li>'USB3.0 하드 도킹스테이션 복제 복사 클론 복사기 HDD SSD 2.5인치 3.5인치 듀얼 외장하드 케이스 28TB지원 퀄리티어슈런스'</li><li>'NEXT 652DCU3 HDD복제기능탑재/도킹스테이션/2.5인치/3.5인치/백업/클론기능 마하링크'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.7786 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el16") |
|
# Run inference |
|
preds = model("이지넷 NEXT-350U3 3.5 외장케이스/USB3.0 하드미포함 레알몰") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 9.6059 | 20 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 50 | |
|
| 2 | 50 | |
|
| 3 | 50 | |
|
| 4 | 50 | |
|
| 5 | 50 | |
|
| 6 | 50 | |
|
| 7 | 3 | |
|
| 8 | 50 | |
|
| 9 | 50 | |
|
| 10 | 7 | |
|
| 11 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0125 | 1 | 0.497 | - | |
|
| 0.625 | 50 | 0.2348 | - | |
|
| 1.25 | 100 | 0.0733 | - | |
|
| 1.875 | 150 | 0.0254 | - | |
|
| 2.5 | 200 | 0.0165 | - | |
|
| 3.125 | 250 | 0.0122 | - | |
|
| 3.75 | 300 | 0.0021 | - | |
|
| 4.375 | 350 | 0.0024 | - | |
|
| 5.0 | 400 | 0.001 | - | |
|
| 5.625 | 450 | 0.0019 | - | |
|
| 6.25 | 500 | 0.0002 | - | |
|
| 6.875 | 550 | 0.0007 | - | |
|
| 7.5 | 600 | 0.0009 | - | |
|
| 8.125 | 650 | 0.0002 | - | |
|
| 8.75 | 700 | 0.0002 | - | |
|
| 9.375 | 750 | 0.0003 | - | |
|
| 10.0 | 800 | 0.0002 | - | |
|
| 10.625 | 850 | 0.0002 | - | |
|
| 11.25 | 900 | 0.0002 | - | |
|
| 11.875 | 950 | 0.0001 | - | |
|
| 12.5 | 1000 | 0.0001 | - | |
|
| 13.125 | 1050 | 0.0001 | - | |
|
| 13.75 | 1100 | 0.0001 | - | |
|
| 14.375 | 1150 | 0.0001 | - | |
|
| 15.0 | 1200 | 0.0001 | - | |
|
| 15.625 | 1250 | 0.0001 | - | |
|
| 16.25 | 1300 | 0.0001 | - | |
|
| 16.875 | 1350 | 0.0001 | - | |
|
| 17.5 | 1400 | 0.0001 | - | |
|
| 18.125 | 1450 | 0.0001 | - | |
|
| 18.75 | 1500 | 0.0001 | - | |
|
| 19.375 | 1550 | 0.0001 | - | |
|
| 20.0 | 1600 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |